本文目录一览:
- 1、联轴节都有哪些分类,安装步骤是什么?
- 2、请提供有关"轨道式集装箱门式起重机的系统原理、使用与维修"的资料
- 3、联轴节都有哪些类型特点?
- 4、交流伺服驱动器报警是怎么回事
- 5、ROTEX,,与KTR+ROTEX区别?
- 6、船舶主机安装应注意哪些问题?
联轴节都有哪些分类,安装步骤是什么?
联轴节,又名联轴器,是用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件,起衔接,缓冲、减振和提高轴系动态性能等作用。联轴器种类繁多,按照被联接两轴的相对位置和位置的变动情况,可以分为:
①固定式联轴器。主要用于两轴要求严格对中并在工作中不发生相对位移的地方,结构一般较简单,容易制造,且两轴瞬时转速相同,主要有凸缘联轴器、套筒联轴器、夹壳联轴器等。
②可移式联轴器。主要用于两轴有偏斜或在工作中有相对位移的地方,根据补偿位移的方法又可分为刚性可移式联轴器和弹性可移式联轴器。
刚性可移式联轴器利用联轴器工作零件间构成的动联接具有某一方向或几个方向的活动度来补偿,如牙嵌联轴器(允许轴向位移)、十字沟槽联轴器(用来联接平行位移或角位移很小的两根轴)、万向联轴器(用于两轴有较大偏斜角或在工作中有较大角位移的地方)、齿轮联轴器(允许综合位移)、链条联轴器(允许有径向位移)等,弹性可移式联轴器(简称弹性联轴器)利用弹性元件的弹性变形来补偿两轴的偏斜和位移,同时弹性元件也具有缓冲和减振性能,如蛇形弹簧联轴器、径向多层板簧联轴器、弹性圈栓销联轴器、尼龙栓销联轴器、橡胶套筒联轴器等。联轴器有些已经标准化。选择时先应根据工作要求选定合适的类型,然后按照轴的直径计算扭矩和转速,再从有关手册中查出适用的型号,最后对某些关键零件作必要的验算。
联轴节的安装步骤:
1、先用无绒布将新联轴节中心孔内壁及需要安装新联轴节的传动轴外壁擦净后,再用沙纸清除表面可能存在的毛刺,最后用7063清洗并擦净。(注意,要仔细清理新联轴节的注油孔,确保没有灰尘及杂物。
2、把新联轴节装到传动轴上,确保联轴节注油孔向下,然后,用力向里一推。
3、把液压设备的管线按照以上方法固定在注油孔上,(注意:固定前一定要先把管内的空气排净。)
4、把工装及其轴向加压装置安装后用工艺杆固定在coupling中心孔上面(注意:工装的开口处应向下对准安装在注油孔上的管线;轴向加压装置的方向不要装反)。
5、设备安装并固定后,开始加压,首先两个压力泵同时加压,液压表打到5000气压表打到500后保压两分钟,然后液压表打到10000气压表打到1000后,保压两分钟,接着液压表打到20000气压表打到2000保压两分钟,最后液压表打到30000气压表打到2500~3000保压两分钟,此时,用手摸联轴节与传动轴的咬合处,如果已经紧密结合,没有突起,说明此时已经安装到位,如果还有突起,就说明没有到位,继续等!如果已经安装到位,注意:先把油压表泄压,轴向压力表继续保压25分钟。
6、保压后,把轴向压力表泄压,注意,旋转泄压阀门的时候,速度一定要快!否则,联轴节可能又脱落出来。把轴向压力表泄压后,观察联轴节的连接处一分钟,如果没有位移,就说明安装成功,如有位移,需参照以上方法重新安装。
7、取下所有工装并恢复。
请提供有关"轨道式集装箱门式起重机的系统原理、使用与维修"的资料
JMG4535轨道式集装箱龙门起重机
一、总则
本起重机专供集装箱货场上作国际标准集装箱的装卸车及堆垛之用。在龙门起重机的行走距离内可以进行吊一箱过三箱的作业,为扩大起重机的作业范围,本机具有两侧7.5米的外伸距,加上龙门架跨度内的35米工作长度,形成50米长的小车作业线。起重机可以在门架跨度内堆存12排集装箱;在外伸距处作车道的集装箱装卸车作业。同时,为了适应不同的集装箱堆放方向和集装箱拖车行走方向,本机设计有小车旋转机构,可使集装箱索具在空载或满载时都能旋转±1700,以提高装卸效率。
本机配备伸缩式集装箱索具(亦称吊具),索具的开闭锁动作和伸缩可以由司机在操纵室操作。
本起重机在轨距35米的轨道上运行,轨道型号为QU80,轨道安装质量必须达到中华人民共和国交通部标准 JT5022-86《港口起重机轨道安装技术条件》的规定,以保证起重机在额定载荷下安全使用。
操纵室悬挂在小车旋转架上,和旋转架、集装箱索具一起横移和旋转,保证司机有良好的视线,以便准确对箱操作。
本起重机各机构均为工作性机构。即都能带载动作,完成20英尺或40英尺集装箱的起升、下降、横移、旋转及整机沿堆场轨道运行。起重机的设计和校核均按我国国家现行标准 GB3811-83《起重机设计规范》和 GB6070-85《起重机械安全规程》的相应规定执行,以保证本起重机在集装箱装卸作业时正常工作。
起重机总体性能表
起重量 起重能力 45吨
吊(索)具下起重量 35吨
装卸集装箱 (长×宽) 20×8英尺,40×8英尺
起升高度 轨上12米 轨下5米
吊(索)具旋转角度 ±1700
门架跨距 35米
门架两侧外伸距 7.5米
门架基距 15.5米
工作速度 起 升 14.1米/分
小车横行 62米/分
吊(索)具旋转 1.13转/分
大车运行 51米/分
起重机最大工作轮压 27吨/轮
大车使用钢轨 QU80
使用电源 种类 3相 380伏 50赫
方式 电缆卷筒绕入/±100米
电力装机容量 CZ=6,JC=40%,255.5千瓦
起重机总重量 260吨
只有取得劳动管理部门的起重机驾驶操作证的司机才能进行装卸作业。在操作本起重机前,司机必须认真阅读本说明书的附件《起重机安全操作规程》及本说明书的各项性能介绍,遵守《规程》的要求进行操作并按本单位的生产作业要求填写作业日记。
二、机构
1. 起升机构
起升机构由带涡流制动器的电动机、液力推杆制动器、中硬齿面减速箱、双联卷筒及载荷传感器组成。共用两套对称布置的绞车组成四索起升机构。4根起升绳从旋转架下分别绕过集装箱索具上架的4 个滑轮,然后向下回到吊具上架,成为4×3的起升绳滑轮绕组。本机构使用钢丝绳型号为6T(25)-20-170长度为85米的4根不扭转钢丝绳。
起升机构安装在小车旋转架上,与旋转架一起旋转以实现索具的±170°旋转动作。
起升电动机为YZRW315S-8,涡流制动器可使集装箱在就位前以1~2米/分的低速下降,以便平稳和准确操作。
卷筒轴端装有高度限位开关,以限制索具的起升高度,起升高度限位开关的调整范围为索具放在地面下5米起至其底部离地面上12米止。
由于起升载荷是由4根起升绳绕过索具滑轮后共同承担的,故要求4根绳的长度要准确,并通过钢丝绳的头部调整好后才能拧紧绳压板。特别是同一个卷筒引出的两根绳必须调好,才能避免因钢丝绳长度差别而引起的索具翘曲,影响集装箱四角的锁紧和起吊。
2. 小车行走机构
小车行走机构在小车梁左右两侧,由两台YZB225M-8变频电动机、卧式减速箱、液力推杆制动器和齿形联轴器和传动轴组成并带动两侧的小车行走轮转动。小车行走轮为2只驱动、2只从动。小车轨距为14.05米,使用P43钢轨。两侧行走轮均带双轮缘,在一侧轨道前后各设2个水平轮,每个水平轮对轨道侧面的间隙通过水平轮的偏心轴调整为1毫米,以使小车梁平稳运行。
用变频器控制的电动机在小车停止前可以先行减速,然后制动,以减少集装箱的摇摆。
3. 小车旋转机构
小车旋转机构在小车梁的中部。该机构以变频电动机、制动器和减速器 “三合一”驱动装置使装在小车梁底部的回转支承旋转,从而使装有起升机构及操纵室的小车旋转架作正反方向170°旋转,实现吊具旋转动作,以适应任何方向的集装箱停放位置。
4. 大车运行机构
大车运行机构由用变频器控制的电动机、液力推杆制动器、圆锥圆柱齿轮减速箱以及开式齿轮组成。开式齿轮带动行走轮转动。每腿上的运行机构相同,均为两个驱动轮和两个从动轮。在二条门架一线的车架上布置顶轨防爬器和在四个角上都设置防台锚定销。
同样,变频电动机可在起重机运行停车前作减速运动或作业时以任意速度作对箱动作。
三.操纵室
操纵室悬挂在小车旋转架侧靠近集装箱索具上方,司机可以从前窗清楚地进行对箱,司机座椅三面环窗。同时,通过后面铝合金门的窗亦可观察后方情况。
操纵室内设有联动操纵台,司机左手为小车行走和旋转动作,右手为起升和大车动作。两侧操纵台上为各种功能按钮与指示灯、电铃、喇叭等。详见电气说明。
室内左前方为带吨位指示的超负荷限制器。操纵室后侧壁上还安装空调器以改善司机操作条件。
四、金属结构
本机金属结构均是钢板焊接而成的箱型结构,门架与门腿成π型,门腿内设直梯,主梁上设有人孔,以方便人员进如进行内部结构检查。门架与主梁用法兰方式联结;主梁分成两段,用高强度螺栓联结;以方便运输和安装。在运输过程中,注意枕木的搁置点应放在箱体的横隔板部位,以免产生凹陷变形。
五、安全保护装置
本机的起升机构、小车机构、旋转机构和大车机构均有终点开关保护。开关位置在总装试车前按设计图要求定位。
起升卷筒轴承座设重量传感器。
大车行走机构上的顶轨器和防台锚定销和小车锚定销上均有行程或联锁开关,亦须在现场作定位调整。
六、集装箱索具
1.集装箱伸缩吊具
另见《吊具使用说明书
2.简易吊距
采用简易吊具时,上架下可挂20’或40’简易吊具.上架为槽钢焊成的框架结构,中间有储缆筐一储存从旋转架上吊下的供索具使用的多芯电缆.通过插接件向吊梁上的电动推杆供电以推动索具的转锁动作,上架的四角设有滑轮,供起升绳船绕后起吊用,上架和吊具通过四个销轴连接.吊梁外框为槽钢结构,中间为箱形梁,一册安装有电动推杆,通过连杆驱动四角的旋锁作90度回转以锁紧集装箱,电动推杆的行程以旋锁作90度开闭动作决定,并由推杆两旁的两只行程开关控制.
索具吊梁的四周共有六块导向板,供对箱之用,司机在对箱时,应尽量使用起升,小车,大车三个机构的慢速操作,即在手柄的第一,二档动作,以免吊梁和集装箱产生冲击碰撞.
七、电气
1. 电源
本机使用三相四线制380伏50赫兹交流电源.电流引自码头供电接线箱,经一4芯软电缆接至电缆卷筒,在电缆卷筒集电器端部的填料函穿出引至门架主梁侧的电气房;再由电气房引出,经电缆拖令接往小车电气房,电源的零线与集电器外壳相接,机上零线就从此外壳接零螺钉引出。
本机使用的电压等级有:
1) 动力:各大、小电动机均采用三相380伏交流电。
2) 控制:控制回路用单相220伏交流电,由本机380V/220V隔离变压器供电。
3) 照明:使用单相220伏交流,从相一零线获取。
2. 主电路
总开关柜设在门架电气房内,从总开关通过P3Q1、P3Q2、P3Q3、P3Q4等开关分别送往起升、小车旋转、小车、大车控制回路及照明开关箱。所有开关全为空气自动开关。对过载、过流、短路均能自动脱扣,切断电路,起保护作用。起升,小车旋转,小车控制在小车电气房内,大车,照明开关箱在大车电气房内。
1) 起升机构:
从自动开关来的电流经过正、反向接触器、热继电器送往起升电动
机。在这里热继电器起到第二重的过载保护及断相保护。电动机的转子回路接有电阻器,它限制了电动机的起动电流值,并且起到电动机的调速功能。由于起升机构是位能负载,对重物下降难能做到低速,为此引入涡流制动器装置,利用转动时产生的涡流电流,对电动机产生制动作用而得到低速,其低速值取决于电动机的外接电阻值和涡流制动器的励磁电流值,可以通过对上述二参数的调整获得所希望的可能速度。为了速度平稳,引入转子电压反馈。
另外 ,本机构为双电机驱动,为求对起升钢丝绳的调整,设有一按钮,当揿下右操纵台的按钮H5S1时,有一台电动机将没有电流输入而停止运转,达到调整吊具水平的作用。
起升电动机为带涡流制动器的绕线式异步电动机,型号YZRW315S-8 2台75KW,电阻分级调速共5档位,电阻器选用标准型,型号为RS54-315S-8。
2) 吊具旋转及小车机构:
吊具旋转驱动电机为YZBE132M1-4,5.5KW,自带制动器;小车驱动电机为
YZB225M-8,2x22KW。
这两机构是相似的,从电源开关P3Q3(或P3Q2)出来的电流经过一接触器,然后输至滤波电抗器和变频装置,由变频器出来的交流电再不是固定的50赫兹,可低可高,再输送至鼠笼型电动机,不同的频率就有不同的电机转速。由于电机在低转速运行时,排热困难,所以在电机上串有冷却风机,此风机独立供电。其转速恒定,风量也固定不变。但吊具旋转机构的驱动电机因功率较小、未设冷却风机。两机构均为无级调速。
变频器有自己的保护设计,对过载、过电流、过电压、欠电压、接地、缺相等保护功能。变频器输出电流的频率变化则由主令控制器上的电位器控制。
3) 大车行走机构:
大车行走机构也是由变频器供电,其设计也与前面的小车机构一样,只是
变频器的输出是并联供电给4台行走电动机。故在每台电机输入端串入一只热继电器作为单独过载保护。大车机构的驱动电机也是鼠笼型电机。
凡是由变频器供电的电动机当它在减速运行时,电机的动能变成电能,由变频器另一回路输出到电阻器消耗掉。使速度减慢下来。故每一变频器都有一配套的电阻器,变频器与电阻器间的联接线不可有断路。
大车驱动电动机型号为YZB180L-6、 15KW、共4台。
3. 控制回路
本机4大机构全部由“可编程序控制器——PLC”控制。此PLC由二台日本
OMROM公司生产的C200H构成,其一为基体,另一为扩展。它的供电电压为AC220V,安装在PLC控制柜6KP内。
PLC具体配置为:
CPU: C200HE-CPU42-E 一块
机架:C200HW-BC081 一块
扩展机架:C200HW-BI051 一块
输入模块:C200H-IA222 八块
输出模块:C200H-OC225 五块
PLC的输入讯号来自操纵台及各类开关,而它的输出先控制中间继电器,再由中间继电器去控制各机构的接触器或继电器,令电动机进入所需工作状态。
1) 紧急停车:
分别在司机室,地面操作箱及门架电气房内设紧停按钮,紧急情
况时令供电系统脱扣跳闸,电机失压停车,但照明没有影响。
2) 起升系统:
在两只钢丝绳卷筒尾部各装一只行程开关,当上升及下降到达设计高度
时,切断控制电路令电机停车。
3) 小车系统:
小车梁一侧的两端设有行走终点开关及终点前的减速开关,以保证在慢速
低达终点,避免撞击及货物摇摆,到达终点自动停车。
停止工作时,小车开到设定的停车点,放下锚定销,联动的锚定开关动作,在锚定销未拔出前小车无法启动,以避免小车误操作。
4) 吊具旋转系统:
本机构只允许旋转±170°。不允许超范围任意旋转。当作旋转时,在终点前有减速开关,到了终点自动停车,以后只能反方向回转,以保护旋转圆筒内的电缆不致绞断出事。
5) 大车系统:
大车机构的附属安全设备较多,有行程终点开关;门腿一侧位置设有锚
定联锁开关;在另一侧位置设有大风防爬装置;装在四条门腿上的大车行走声光报警器以及电缆放出完毕停车开关。
这里需说明一下:当操纵大车运行手柄欲令大车行走时,首先行走声光报警器发出红色闪光,且笛声大作,警告轨道附近人员避让,同时,防爬器电动机启动提防爬靴。当防爬靴提起高度碰及行程开关时它一面接通行走控制电路,一面点亮松轨指示灯,行走电动机正向(或反向)接触器动作,起重机启动运行。
停车时,操纵杆手柄扳回“0”位,行走电动机失电,此时行走制动器不立即刹车,起重机可以籍惯行滑行一段距离。经过一段延时,然后制动器才失电抱闸停车,同时防爬电机失电,防爬靴下落至路轨上,碰动行程开关,切断大车控制回路,顶轨指示灯亮。
6)吊具系统:
吊具开闭锁只有在着箱开关全部动作后,才能动作。开闭锁动作完成后才能进行起升动作。
7)超载保护系统:
测重传感器安装在一台起升卷筒的轴承座内重量传感器,这里的钢丝绳是没有收放的,利用钢绳的张力测量吊重。讯号传至司机室内的微电脑载荷限制器,它显示所吊物品的重量。当载荷达到90%额定值时蜂鸣器发出断续声响,同时报警灯闪烁,是为了预报警。当达到105%额定起重量时,蜂鸣器发出连续声响,报警灯长亮,约经0.5秒延时后,若荷重仍没减小,继电器即行动作,切断起升电机上升控制回路。此时,重物只能下降不能上升。载荷限制器的调试详细情况请见“载荷限制器使用说明书”,并应定期进行检查标定。
4. 操作
4.1司机室操作
司机室操作分左右两联动台,其中左面为总电源控制,小车及小车旋转的控制,右面为大车及起升控制,右操作台下设一脚踏开关作电铃鸣响开关。
操作台前面还设有吊具状态指示,用于监视吊具的开闭锁及着箱情况。
操作前,首先将地面的锚定销提出,使锚定开关复原,并检查大车两侧行程开关是否正常,然后登上门架电气房,合上电源柜0KP内电源开关,再合大车控制柜5KP内电源开关及照明开关箱内的有关开关,然后再上小车平台,提起小车锚定销,最后进入司机室,启动电源按钮,在空载条件下试运转各个机构,观察是否正常,以较慢速度试各行程开关,能否正常动作。
故障显示器置于PLC柜内用于监视运转机构工作状态。
载荷限制器供电5分钟后显示是否在“0”位。
只有肯定以上试车项目皆正常时才可以正式投入作业。
操作时,一旦手离开操纵杆,操纵杆会自动返回中央的“0”位,并有销子锁定在“0”档,这是机械的零位保护,在电路设计中尚有电气的零位保护。只有当手指提起销子握柄后,手柄才可以自由推板至任何档位。右手柄前后推位为起升机构的下降和上升;左右为大车机构。左手柄前后推位为小车前后行;左右推位是吊具的左右旋转,其他按钮见面板。
下班,司机离机必须做的工作有:把电源总开关扳回断路,小车锚定销放下;切断行走柜内的动力电源开关,电缆卷筒和防爬器的电源开关;照明开关箱总电源或部分照明灯电源,放下大车锚定销。这样司机就可以离去。
左操纵台设有一选择开关,供吊具伸或缩至40英尺或20英尺,以适合集装箱。右操纵台设有吊具油泵电机启动和停车二只按钮。操作方法是先启动油泵,然后选择吊具的伸或缩。
4.2.地面操作箱操作
主要用于大车防爬器控制,锚定越程控制及左右慢速行走,在紧急状态下,也可断开总电源。
5. 照明系统
1) 机架部分的照明,有登机梯子灯及沿小车轨道布置的投光灯,其操作的
开关箱设在行走柜旁,地面操作。
2) 上部照明:有司机室照明、起升卷筒平台照明、小车传动平台照明以及集装箱装卸的加强照明。这些灯具的开关设在司机室内。
3) 应急照明:司机室,门架电气房,小车电气房内设有220V插座供应急照明用。
6. 音响系统
1) 扩音装置:设有10W扩大机、话筒、喇叭。是司机对地面人员喊话设备。
2) 无线对讲机由用户自备。
3) 电铃:由设在司机座椅前的脚踏开关控制,是作业的警号。
4) 大车行走声光警报器:是警告行人走轨道附近人员避让的设备。
7. 防雷:本机为全金属结构,并且在钢轨上运行,因此不另设避雷线,但要
求大车行走钢轨必须有良好的接地,接地电阻不大于4欧。
8. 接地系统
除上述的钢轨有良好接地之外,电源的零序线在机上多次与起重机的金属
结构连接,使机上任何部位对地都有良好的接触,对地的电阻值不大于4欧。具体的措施有:
1) 电缆卷筒外壳与零线接。
2) 回转圆筒与零线接。
3) 小车机构与零线接。
4) 带电体的非带电金属外壳与基座连接时,可以不另接接地线,但必须刮除接触面的漆层,以利金属与金属紧密接触。
八.《起重机安全操作规程》
九.各规格螺栓预紧力F0和预紧力距表:
规格 8.8级F0 (kg) Mo(K=0.145) (kgm) 10.9级F0 (kg) Mo(K=0.145) (kgm)
M16 7200 16 10000 23
M18 8600 22 13000 34
M20 11000 32 16000 46.4
M22 13500 43 20000 64
M24 15500 71 24000 84
M27 20500 80 30000 118
M30 25000 108 36000 156
M36 36600 191 53000 276
JMG4535轨道式集装箱龙门起重机
一、功能概述
本起重机专供集装箱货场上作国际标准集装箱的装卸车及堆垛之用。在龙门起重机的行走距离内可以进行吊一箱过三箱的作业,为扩大起重机的作业范围,本机具有两侧7.5米的外伸距,加上龙门架跨度内的35米工作长度,形成50米长的小车作业线。起重机可以在门架跨度内堆存12排集装箱;在外伸距处作车道的集装箱装卸车作业。同时,为了适应不同的集装箱堆放方向和集装箱拖车行走方向,本机设计有小车旋转机构,可使集装箱索具在空载或满载时都能旋转±1700,以提高装卸效率。
本机配备伸缩式集装箱索具(亦称吊具),索具的开闭锁动作和伸缩可以由司机在操纵室操作。
本起重机在轨距35米的轨道上运行,轨道型号为QU80,轨道安装质量必须达到中华人民共和国交通部标准 JT5022-86《港口起重机轨道安装技术条件》的规定,以保证起重机在额定载荷下安全使用。
操纵室悬挂在小车旋转架上,和旋转架、集装箱索具一起横移和旋转,保证司机有良好的视线,以便准确对箱操作。
本起重机各机构均为工作性机构。即都能带载动作,完成20英尺或40英尺集装箱的起升、下降、横移、旋转及整机沿堆场轨道运行。起重机的设计和校核均按我国国家现行标准 GB3811-83《起重机设计规范》和 GB6070-85《起重机械安全规程》的相应规定执行,以保证本起重机在集装箱装卸作业时正常工作。
起重机总体性能表
起重量 起重能力 45吨
吊(索)具下起重量 35吨
装卸集装箱 (长×宽) 20×8英尺,40×8英尺
起升高度 轨上12米 轨下5米
吊(索)具旋转角度 ±1700
门架跨距 35米
门架两侧外伸距 7.5米
门架基距 15.5米
工作速度 起 升 14.1米/分
小车横行 62米/分
吊(索)具旋转 1.13转/分
大车运行 51米/分
起重机最大工作轮压 27吨/轮
大车使用钢轨 QU80
使用电源 种类 3相 380伏 50赫
方式 电缆卷筒绕入/±100米
电力装机容量 CZ=6,JC=40%,255.5千瓦
起重机总重量 260吨
二.电器设备维护保养:
电器设备应加强平日保养,才能延长其使用寿命,减少事故。
1) 电动机
电动机的维护保养主要是滑环与炭刷。要定期经常检查炭刷与滑环的接
触情况,接触面低于70%时,必须仔细研磨炭刷,使之接触良好。如滑环表面有斑点或污秽,必须磨平、洗净。炭刷高度方向磨损一半后,应予以更换新炭刷。
2) 接触器
接触器尘埃经常打扫,主触点的磨损要常检查,有烧毛现象可用细纱布
(纸)抛光。触点烧毁一半,则应掉换新触头。
接触器铁芯与衔铁接合面的防锈油要擦净。衔铁应来回动作自如,无卡紧现象发生。
3) 电阻箱
要注意检查电阻片的发热生锈情况。如发现局部发红,应旋紧电阻片夹
紧螺钉。减少片面接触电阻。变形过大的电阻片应予以校正或更换。
4) 电力液压推杆
电力液压推杆故障很少。主要注意漏油,保证油面在规定基准面上。
5) 电缆卷筒集电器
电缆卷筒集电器要经常定期检查炭刷与滑环的接触情况,滑环表面质
量,炭刷磨损,炭刷与滑环的接触面不能低于炭刷面积的80%,否则,重新研磨炭刷,使之接触良好。滑环表面要保护光亮。有斑痕要磨光。有脏污要清除。
炭刷高度磨损二分之一后要更换新炭刷。
炭刷磨下的炭粉要吹光。
其它电器按一般常规保护,不再叙述。
6) 变频器及PLC
见该部件的使用说明书。
7)超负荷限制器
见西亚厂的使用说明书。
8)限位开关
应定期检查,可在人员配合下,用手触动,看一下,控制回路反应是否正常.
三、主要零部件检修通用规定
零部件 检修要领 磨耗限度
修理限度 使用限度
螺栓联接 检查螺栓连接固定的可靠性(1) 将螺母向拧紧方向试转一下。(2) 用小锤敲打螺栓头及螺母。(3) 检查弹簧垫切口的张开度。 开口大于1.5倍垫圈厚
键联接 部件受力时有否冲击声或位移,以决定更换或修理之。 多次更换后,键宽不应超过原宽度的15%
联轴节 (1)被连接轴的中心线相互位移及歪斜 0.3毫米
(2)弹性柱销联轴节的弹性圈与孔壁间的间隙(单面测量) 0.2毫米
制动器 (1) 用塞尺检查衬垫与制动轮接触面积 70% 弹簧裂纹a) 裂纹b) 轴及轴孔磨损直径的5%
(2)制动轮在连续工作中是否过热(有焦味或冒烟)
(3) 各铰点可靠性及制动油渗漏
(4)调整制动弹簧及闸瓦开度 1~1.5毫米
(5)制动衬垫磨损 2毫米 原厚的50%
(6)制动轮表面磨损 1.5毫米 a) 裂纹b) 起升磨损40%厚,其他磨损50%厚
滑动轴承 (1)润滑油槽及密封装置的可靠性
(2)工作温度 外壳表面温升 350C
(3)运转的噪音
(4)径向及轴向间隙 原轴衬厚度的20% 原轴衬厚度的30%
续上表
零部件 检修要领 磨耗限度
修理限度 使用限度
滚动轴承 (1)润滑油道及密封装置的可靠性 径向间隙滚珠 0.2毫米,滚柱 0.25毫米
(2)工作温度 外壳表面温升 450C(涡流制动器除外)
(3)运转的噪声
(4)滚道的磨损,剥落及间隙增大 轴有振动
(5)两端固定的轴应考虑有调节受热伸长及应安装偏差所需的预留轴向游隙
销或轴 (1)销或轴磨损 原尺寸4% 6%
(2)销或轴与轴承座间隙 1.5毫米 2毫米
(3)销或轴的弯曲变形
滚子链 检查滚子链磨损和变形 a. 伸长了5%b. 表面裂纹
螺杆 (1) 螺纹磨损 螺距的20% 螺距的30%
(2) 表面裂纹 裂纹
钢丝绳 (1) 钢丝绳表面磨损或腐蚀,断丝与腐蚀磨损同时发生时,允许断丝数按下表之系数折减:钢丝表面磨损或蚀量%10,15,20,30~40 40折减系数%85,75,70,60,50,0(2)绳端紧固情况 a) 一个节距中的断丝数对18×19不扭转钢丝绳为30丝,对6×37钢丝绳为30丝,对6×19钢丝绳为16丝。b) 钢丝表面磨损或腐蚀量 40%
滑动槽及卷筒槽 (1)滑轮槽壁径向磨损 a) 不均匀磨损3mmb) 原壁厚10%c) 钢丝直径的25%
(2)卷筒槽壁径向磨损 原筒壁厚度20%
(3)滑轮和卷筒的裂纹、变形及损伤 裂纹
续上表
零部件 检修要领 磨耗限度
修理限度 使用限度
吊 钩 (1)吊钩表面(用10~20倍放大镜)裂纹及破口情况 有疲劳裂纹
(2)吊钩危险断面的磨损 断面高的8% 10%
(3)钩口变形 开口度增大15% 不断发展
(4)钩颈拉伸及槽梁弯曲 同上
(5)扭曲变形 扭曲100
齿轮 及减速器 (1)润滑及漏油情况 减速器油温 650C
(2)运转噪声 有撞击及振动
(3)齿面磨损(占原齿厚) a. 起升机构和变幅机构b. 其它机构c. 开式传动d. 表面硬化层 第1级10%其它级20%第1级15%其它级25%20%80%
(4)齿面剥落、点蚀 a. 占齿的工作面b. 剥落深度占齿厚 30%10%
(5)齿轴安装歪斜
(6)齿轮箱体变形及裂纹
走轮 (1) 滚动面磨损 磨损6毫米
(2) 轮缘磨损及变形 弯曲变形原厚度20% a. 原厚度50%b. 开裂
(3) 同一车架两滚轮直径差 a. 驱动轮0.2%b. 从动轮2毫米 5毫米
(4) 左右轨道上走轮滚动面直径差 a. 驱动轮0.5%b. 从动轮4毫米 5毫米
轨道 (1) 同一轨道平直度(局部弯曲) 1/2000
(2) 轨距误差 ±5毫米 ±10毫米
(3) 同一横断面两轨道高差 1/1000
(4) 轨道接头错位 a. 高低1毫米b. 水平2毫米
(5) 同一轨道线高差 1/1500
联轴节都有哪些类型特点?
联轴节的类型特点:
一、弹性联轴节
1、一体成型的金属弹性体;
2、零回转间隙、可同步运转;
3、弹性作用补偿径向、角向和轴向偏差;
4、高扭矩刚性和卓越的灵敏度;
5、顺时针和逆时针回转特性完全相同;
6、免维护、抗油和耐腐蚀性;
7、有铝合金和不锈钢材料供选择;
8、固定方式主要有顶丝和夹紧两种。
二、膜片联轴节
1、高刚性、高转矩、低惯性;
2、采用环形或方形弹性不锈刚片变形;
3、大扭矩承载,高扭矩刚性和卓越的灵敏度;
4、零回转间隙、顺时针和逆时针回转特性相同;
5、免维护、超强抗油和耐腐蚀性;
6、双不锈钢膜片可补偿径向、角向、轴向偏差,单膜片则不能补偿径向偏差。
三、波纹管联轴节
1、无齿隙、扭向刚性、连接可靠、耐腐蚀性、耐高温;
2、免维护、超强抗油,波纹管形结构补偿径向、角向和轴向偏差,偏差存在的情况下也可保持等速作动;
3、顺时针和逆进针回转特性完全相同;
4、波纹管材质有磷青铜和不锈钢供选择;
5、可适合用于精度和稳定性要求较高的系统。
四、滑块联轴节
1、无齿隙的连接,用于小扭矩的测量传动结构简单;
2、使用方便、容易安装、节省时间、尺寸范围广、转动惯量小,便于目测检查;
3、抗油腐蚀,可电气绝缘,可供不同材料的滑块弹性体选择;
4、轴套和中间件之间的滑动能容许大径向和角向偏差,中间件的特殊凸点设计产生支撑的作用,容许较大的角度偏差,不产生弯曲力矩,侃轴心负荷降至最低。
五、梅花联轴节
1、紧凑型、无齿隙,提供三种不同硬度弹性体;
2、可吸收振动,补偿径向和角向偏差;
3、结构简单、方便维修、便于检查;
4、免维护、抗油及电气绝缘、工作温度20℃-60℃;
5、梅花弹性体有四瓣、六瓣、八瓣和十瓣;
6、固定方式有顶丝,夹紧,键槽固定。
联轴节,又名联轴器,是用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件,起衔接,缓冲、减振和提高轴系动态性能等作用。在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。联轴器由两半部分组成,分别与主动轴和从动轴联接。一般动力机大都借助于联轴器与工作机相联接。
交流伺服驱动器报警是怎么回事
交流伺服驱动器报警是怎么回事?
下面就通过伺服相关内容来举例关于出现故障报警应该怎么去调整维修。
伺服驱动器维修:
一、数控铣床,打开电源和系统,伺服电机嗡嗡响,响几分钟之后伺服电机会发热,调小刚性后不响了,但铣出来的圆不像圆,该怎样调?
应该是几台驱动器设置的增益不同,造成电机在不同的转速下自激。可以把待测的驱动器与参考驱动器的参数设置成一致再试一下。惯量比看了吗?增益是一方面,但也不要忽略了惯量。
二、伺服驱动器,通过调节三环PID控制伺服电机,噪音比较大,但电机并没有震动,载波频率是10KHZ,电流采样速度是0.1us一次,为什么?
噪音的原因:因为没有做输入脉冲滤波,所以才有那个噪音。
三、电机启动不起来而且噪声大振动大是什么原因?
1、 脱开载荷;
2、 用手盘动,确认灵活、无异常;
3、 空载启动实验;
4、 检查负载情况。
先看看是不是动平衡出了问题,这是电流声音,其次看电机轴承,最后是驱动器参数,多数是轴承松懈或坏。
四、电动机运行有异常噪音,什么原因和怎么处理?
1、当定子与转子相擦时,会产生刺耳的“嚓嚓”碰擦声,这多是轴承有故障引起的。应检查轴承,损坏者更新。如果轴承未坏,而发现轴承走内圈或外圈,可镶套或更换轴承与端盖。
2、电动机缺相运行,吼声特别大。可断电再合闸,看是否能再正常起动,如果不能起动,可能有一相熔丝断路。开关及接触器触头一相未接通也会发生缺相。
3、轴承严重缺油时,从轴承室能听到“咝咝”声。应清洗轴承,加新油。
4、风叶碰壳或有杂物,发出撞击声。应校正风叶,清除风叶周围的杂物。
5、笼型转子导条断裂或绕线转子绕组接头断开时,有时高时低的“嗡嗡”声,转速也变慢,电流增大,应检查处理。另外有些电动机转子和定子的长度配合不好,如定子长度比转子长度长得太多,或端盖轴承孔磨损过大,转子产生轴向窜动,也会产生“嗡嗡”的声音。
6、定子绕组首末端接线错误,有低沉的吼声,转速也下降,应检查叫正。
电机噪声很大,是什么原因?如何处理?
原因1:电机内轴承间隙大 ;处理方法:更换轴承。
原因2:转子扫堂 ;处理方法:重新修理定子、转子。
原因3:磁钢松动 ;处理方法:重新粘结磁钢。
原因4:电机机体偏转;处理方法:重新调整机体;
原因5:电机转向器表层氧化、烧蚀、油污凹凸不平、换向片松动 。处理方法:清洗换向器或焊牢换向片。
原因6:碳刷松动、碳刷架不正;处理方法:调整。
五、电机有噪声大,什么原因?怎么解决?
依据电机噪声发生的分歧方法,大致可把其噪声分为三大类:①电磁噪声;②机械噪声;③空气动力噪声。
电磁噪声首要是由气隙磁场效果于定子铁芯的径向重量所发生的。它经过磁轭向别传播,使定子铁芯发生振动变形。其次是气隙磁场的切向重量,它与电磁转矩相反,使铁芯齿部分变形振动。当径向电磁力波与定子的固有频率接近时,就会惹起共振,使振动与噪声大大加强,甚至危及电机的使用寿命。
根据电磁噪声的成因,我们可采用下列办法降低电磁噪声。
⑴尽量采用正弦绕组,削减谐波成份;
⑵选择恰当的气隙磁密,不该太高,但过低又会影响资料的应用率;
⑶选择适宜的槽共同,防止呈现低次力波;
⑷采用转子斜槽,斜一个定子槽距;
⑸定、转子磁路对称平均,迭压严密;
⑹定、转子加工与装配,应留意它们的圆度与同轴度;
⑺留意避开它们的共振频率。
六、新买的电,就是电机和减速机连在一起的那种 SEW的,主要是靠 PLC和变频器控制,使用的转速很低,大约在25赫兹左右,感觉噪音很大,机械上的主动链轮和被动链轮的角度没有问题,电机底座固定的也很牢固,散热风扇和防护罩没有刮擦,爆闸也是松开的,但是一运转起来噪音非常的大,就好像小区里面变压器发出的声音,为什么?
那就是变频器驱动电机所特有的电磁噪音(吱吱的),没有办法消除掉,但可以减少一点,就是修改变频器参数:把那个载波频率加大一点,噪音就会小一点的。但是加大变频器的载波频率,会导致变频器发热。25赫兹左右低频原本很烦人,刮擦一般音频较高,底座固定的也很牢固要看什么底座,金属板声音会比较大,负载大声音会更大,用螺丝刀顶住耳朵仔细听听音源来自什么地方,要是安装没有什么问题,电机声音大往往是轴承不良,新的应该不至于,可能原本就是这样的,运行正常就行。另外就是控制问题。
七、伺服电机运转时有异响和发热是什么原因?
异响是电机的负载过重,电机的转矩小于负载所需转矩,而电机的堵转转矩大于负载所需转矩。发热就是电机的电流过大(一般发热很正常),若是很烫,或者堵转时间过长很容易烧毁电机(电机退磁)。直白说就是小马拉大车很费力,为了拉动小马就更加的费劲拉车,所以会发热(增加电流),拉车很费劲(异响)。异响是因为伺服电机轴承坏了,发热是电流大,实质是伺服电机为了克服电机轴震动而产生的异常大电流,估计电机坏了,需尽快处理,不然故障会扩大。
八、西门子伺服电机会嗡嗡响是什么问题?
伺服电机出现这种问题有多种原因,一是伺服电机编码器零位不准,也就是编码器零位漂移,二是驱动器刚性不足或参数有问题,三是伺服电机动力线接的可能有问题呀,伺服电机的动力线是不能搞错的,可调换几次看看。四是编码器安装问题或编码器自身有问题,需要认真检查,有同样的伺服电机和驱动器最好相互调换一下试试看。伺服电机有问题,最好找专业人士检修。系统与驱动器故障,电机本身故障;驱动器与实际进给系统的匹配未达到最佳值而引起的,通常只要通过驱动器的速度环增益与积分时间的调节即可进行消除,具体方法为:
1)根据驱动模块及电动机规格,对驱动器的调节器板的S2进行正确的电流调节器设定。
2)将速度调节器的积分时间Tn调节电位器(在驱动器正面),逆时针调至极限(Tn≈39ms)。
3)将速度调节器的比例Kp调节电位器(在驱动器正面),调整至中间位置(Kp≈7~10)。
4)在以上调整后,即可以消除伺服电动机的尖叫声,但此时动态特性较差,还须进行下一步调整。
5)顺时针慢慢旋转积分时间Tn调节电位器,减小积分时间,直到电动机出现振荡声。
6)逆时针稍稍旋转积分时间Tn调节电位器,使电动机振荡声恰好消除。
7)保留以上位置,并作好记录。本机床经以上调整后,尖叫声即消除,机床恢复正常工作。
九、电机扫堂是什么原因?
电机扫堂就是电机的转子与定子绕组里的硅钢片发生摩擦,一般是轴承坏了,还有可能是轴承走外缘,端盖的轴承位置松动。也有可能是转子走内缘,转子上的轴承位置坏了。最小的一种可能是转子弯曲造成的。轴承磨损或者是轴承座松动会造成的转子偏心。
电机轴上支承圈磨损严重、转子铁心位移,或因其他原因使定子铁心位移,造成电机锥形转子与定子间隙太小发生扫膛。电机严禁“扫膛”,当发生扫膛后,应拆下支承圈进行更换,调整定子转子锥面之间的间隙使之均匀,或送修。
十、交流伺服电机在运行中会出现抖动的现象,问题需怎样解决?
E-1E:指检查不到遥控套准的实际值。
E-2E:指不能传送正常值。
E-3E:指不能检查当前所选单元的状态。
E-4E:指伺服电机当前的运行状态不能被确认。
E-5E:指伺服电机位置电位计不在调整的范围内。
抖动是不正常的吧,可能是由于导轨不顺畅,或者电源不足。把功率调一下,调小点。
十一、伺服控制器一般使用中,都是调节哪些参数的?
不同品牌使用的参数和参数定义都有所不同。以下以安川伺服调试做一总结。
1、 安川伺服在低刚性(1~4)负载应用时,惯量比显得非常重要,以同步带结构而论,刚性大约在1~2(甚至1以下),此时惯量比没有办法进行自动调谐,必须使伺服放大器置于非自动调谐状态;
2、 惯量比的范围在450~1600之间(具体视负载而定)
3、 此时的刚性在1~3之间,甚至可以设置到4;但是有时也有可能在1以下。
4、 刚性:电机转子抵抗负载惯性的能力,也就是电机转子的自锁能力,刚性越低,电机转子越软弱无力,越容易引起低频振动,发生负载在到达指定位置后来回晃动。刚性和惯量比配合使用,如果刚性远远高于惯量比匹配的范围,那么电机将发生高频自激振荡,表现为电机发出高频刺耳的声响,这一切不良表现都是在伺服信号(SV-ON)ON并且连接负载的情况下。
5、 发生定位到位后越程,而后自动退回的现象的原因:位置环增益设置的过大,主要在低刚性的负载时有此可能。
6、低刚性负载增益的调节:
A、将惯量比设置为600;
B、将Pn110设置为0012;不进行自动调谐;
C、将Pn100和Pn102设置为最小;
D、将Pn101和Pn401设置为刚性为1时的参数;
E、然后进行JOG运行,速度从100~500;
F、进入软件的SETUP中查看实际的惯量比;
G、将看到的惯量比设置到Pn103中;
H、并且会自动设定刚性,通常此时会被设定为1;
I、 然后将SV-ON至于ON,如果没有振荡的声音,此时进行JOG运行,并且观察是否电机产生振荡;如果有振荡,必须减少Pn100数值,然后重复E、F重新设定转动惯量比;重新设定刚性;注意此时刚性应该是1甚至1以下;
J、在刚性设定到1时没有振荡的情况下,逐步加快JOG速度,并且适当减少Pn305、Pn306(加减速时间)的设定值;
K、在多次800rpm以上的JOG运行中没有振荡情况下进入定位控制调试;
L、首先将定位的速度减少至200rpm以内进行调试;
M、并且在调试过程中不断减少Pn101参数的设定值;
N、如果调试中发生到达位置后负载出现低频振荡现象,此时适当减少Pn102参数的设定值,调整至最佳定位状态;
O、再将速度以100~180rpm的速度提高,同时观察伺服电机是否有振动现象,如果发生负载低频振荡,则适当减少Pn102的设定值,如果电机发生高频振荡(声音较尖锐)此时适当减少Pn100的设定值,也可以增加Pn101的数值;
P、说明:Pn100 速度环增益 Pn101 速度环积分时间常数 Pn102 位置环增益Pn103 旋转惯量比 Pn401 转距时间常数。
7、在定位控制中,为了使低刚性结构的负载能够减少机械损伤,因此可以在定位控制的两头加入一定的加减速时间,尤其是加速时间;通常视最高速度的高低,可以从0.5秒设定到2.5秒(指:0到最高速的时间)。
8、电机每圈进给量的计算:
A、电机直接连接滚珠丝杆: 丝杆的节距;
B、电机通过减速装置(齿轮或减速机)和滚珠丝杆相连: 丝杆的节距×减速比(电机侧齿轮齿数除以丝杆处齿轮齿数);
C、电机+减速机通过齿轮和齿条连接: 齿条节距×齿轮齿数×减速比;
D、电机+减速机通过滚轮和滚轮连接: 滚轮(滚子)直径×π×减速比;
E、电机+减速机通过齿轮和链条连接: 链条节距×齿轮齿数×减速比;
F、电机+减速机通过同步轮和同步带连接: 同步带齿距×同步带带轮的齿数×(电机侧同步轮的齿数/同步带侧带轮的齿数)×减速比; 共有3个同步轮,电机先由电机减速机出轴侧的同步轮传动至另外一个同步轮,再由同步轮传动到同步带直接连接的同步轮。
9、负荷惯量:
A、电机轴侧的惯量需要在电机本身惯量的5~10倍内使用,如果电机轴侧的惯量超过电机本身惯量很大,那么电机需要输出很大的转距,加减速过程时间变长,响应变慢;
B、电机如果通过减速机和负载相连,如果减速比为1/n ,那么减速机出轴的惯量为原电机轴侧惯量的(1/n)2;
C、惯量比:m=Jl /Jm 负载换算到电机轴侧的惯量比电机惯量;
D、Jl (5~10)Jm;
E、当负载惯量大于10倍的电机惯量时,速度环和位置环增益由以下公式可以推算 Kv=40/(m+1) 7=Kp=(Kv/3)。
10、一般调整(非低刚性负载):
A、一般采用自动调谐方式(可以选择常时调谐或上电调谐);
B、如果采用手动调谐,可以在设置为不自动调谐后按照以下的步骤;
C、将刚性设定为1,然后调整速度环增益,由小慢慢变大,直到电机开始发生振荡,此时记录开始振荡的增益值,然后取50~80%作为使用值(具体视负载机械机构的刚性而论);
D、位置环增益一般保持初始设定值不变,也可以向速度环增益一样增加,但是在惯量较大的负载时,一旦在停止时发生负载振动(负脉冲不能消除,偏差计数器不能清零)时,必须减少位置环增益;
E、在减速、低速电机运行不匀时,将速度环积分时间慢慢变小,知道电机开始振动,此时记录开始振动的数值,并且将该数据加上500~1000,作为正式使用的数据;
F、伺服ON时电机出现目视可见的低频(4~6/S)左右方向振动时(此时惯量此设定值很大),将位置环增益调整至10左右,并且按照C中所述进行重新调整。
11、调整参数的含义和使用:
A、位置环增益: 决定偏差计数器中的滞留脉冲数量。数值越大,滞留脉冲数量越小,停止时的调整时间越短,响应越快,可以进行快速定位,但是当设定过大时,偏差计数器中产生滞留脉冲,停止时会有振动的感觉; 惯量比较大时,只能在速度环增益调整好以后才能调整该增益,否则会产生振动;
B、位置环增益和滞留脉冲的关系:e=f / Kp 其中e是滞留脉冲数量;f是指令脉冲频率;Kp是位置环增益; 由此可以看出Kp越小,滞留脉冲数量越多,高速运行时误差增大;Kp过高时,e很小,在定位中容易使偏差计数器产生负脉冲数,有振动;
C、速度环增益: 当惯量比变大时,控制系统的速度响应会下降,变得不稳定。一般会将速度环增益加大,但是当速度环增益过大时,在运行或停止时产生振动(电机发出异响),此时,必须将速度环增益设定在振动值的50~80%。
D、速度积分时间常数: 提高速度响应使用;提高速度积分时间常数可以减少加减速时的超调;减少速度积分时间常数可以改善旋转不稳定。
十二、伺服电机抖动,怎么办?
伺服电机为珠海运控的,当上方连杆没装上时,一切看起来正常;一旦连杆装上以后,电机就自己左右摇摆,参数设置半天也没整好。注:未接有减速器这个现象说明两个问题:
1、负载惯量远大于电机本身惯量;
2、两部分连接的刚度较低,使负载产生了谐振。
在这种情况下,系统只能调的很软,也就是刚性要调低,反应速度要减慢。具体的方法是关闭积分,同时降低位置环增益。
如要解决也需针对这两个问题下手:
1、推荐增加一个减速机,这样负载折算到电机的惯量就大大降低,日本伺服通常要求负载/电机惯量比小于5:1。
2、负载与减速机的连接要牢固,增加刚度。
以上两个措施要同时使用才好,如果负载本身刚度低就没办法了。在这个情况下,即使电机不震动了,快速启停时负载也会震动。
十三、怎样解决伺服电机在定位点突然停止引起负载的抖动问题呢?
可以试一下用有加减速脉冲输出指令来做,突然停止引起负载的抖动是转动惯性与减速力矩矛盾的体现,能想办法减轻但不能彻底消除。最有效的办法是到定位点之前给一段时间逐渐减速。这个要从2方面来解决。根本的,伺服的性能与现场调试;PLC发脉冲。
十四、用PLC发送脉冲控制伺服电机,当没有发送脉冲时,有时电机有微小的抖动,怎么办?
1、伺服参数要调整好,主要是:惯量大小,刚性,
2、有的还需要调整位置比例,积分,微分。
十五、用程序步进电机速启动时,会有抖动声无法启动,用伺服电机能解决这种问题?
跟程序关系不大,应是电机转动惯量不够导致,建议换大点的步进或者伺服,伺服可以过载。
十六、伺服电机快速有抖动什么原因?
1、伺服配线:
a.使用标准动力电缆,编码器电缆,控制电缆,电缆有无破损;
b.检查控制线附近是否存在干扰源,是否与附近的大电流动力电缆互相平行或相隔太近;
c.检查接地端子电位是否有发生变动,切实保证接地良好。
2、伺服参数:
a.伺服增益设置太大,建议用手动或自动方式重新调整伺服参数;
b.确认速度反馈滤波器时间常数的设置,初始值为0,可尝试增大设置值;
c.电子齿轮比设置太大,建议恢复到出厂设置;
d.伺服系统和机械系统的共振,尝试调整陷波滤波器频率以及幅值。
3、机械系统:
a.连接电机轴和设备系统的联轴器发生偏移,安装螺钉未拧紧;
b.滑轮或齿轮的咬合不良也会导致负载转矩变动,尝试空载运行,如果空载运行时正常则检查机械系统的结合部分是否有异常;
c.确认负载惯量,力矩以及转速是否过大,尝试空载运行,如果空载运行正常,则减轻负载或更换更大容量的驱动器和电机。
十七、引起伺服电机振动的原因是什么?
1、伺服电机的抖动鸣叫跟本身机械结构(如直流伺服电机经常出现的电刷故障)、速度环问题(速度环积分增益、速度环比例增益、加速度反馈增益等参数设置不当或伺服系统的补偿板和放大板故障)、负载惯量(导轨或丝杆出现问题)、电气(制动没打开,速度环反馈电压不稳)有关。
2、电机不转时很小的偏移会被速度环的比例增益放大,速度反馈产生相反转矩使电机来回抖动。降低积分增益会使机床响应迟缓,刚性变坏。加速度反馈是利用电机速度反馈信号乘以加速度反馈增益(pa.2066)对转矩命令进行补偿实现对速度环振动控制。位置指令脉冲与反馈脉冲不相等时共同产生速度脉冲指令。A=F*Ks,F为指令脉冲频率;Ks是位置环增益;A为加速脉冲。Xe=F/Ks,Xe为位置偏差脉冲。因此增益大速度就大,惯性力就大;增益越大,偏差越小,越易产生振动。 先检查下制动是否打开。在FANUC系统中可以调节以下参数来消除由于参数设置不当引起的振动: pa.2021(负载惯量),pa.2044(加速度比例增益),pa.2066(加速度反馈增益)。
十八、伺服电机叫,而且围绕一点来回震荡是怎么回事?
最近碰到过此类的问题,控制卡控制伺服,仔细观察X轴丝杠在来回的作圆周运动,不是很明白应该调整哪些参数来解决,MR-E的伺服,卡输出1000个脉冲,1个脉冲走10个u。
来回调整速度环和位置环增益试试。我碰到这种情况是因为速度环增益太低,积分因子也比较低造成的。降低驱动器上的位置增益。 目前位置环增益是自动模式,而且最近是想增加位置环增益改善滞留脉冲的影响。那就增加速度环增益试试,不过可能更糟,改个大点儿的电机试试。使用伺服监控软件如何调好伺服的增益? 如何看曲线来分析系统的响应?如果参数调好了,在伺服快定位结束的时候会不会一定会发生超程,这时有微小的振动呢?2号参数的第四位是机械共振频率设置,尽量提高它,应该会有所改善,除非选型不合适,负载的转动惯量远远大于电机转子的转动惯量。一般振荡多是积分作用过强,调节时还可以适当加大位置环比例增益。
十九、引起伺服电机振动的原因是什么?
(1)机械结构不顺畅,机械结构松动
(2)驱动器的刚性参数调的太高,引起共振
(3)伺服功率不够
(4)还有可能是伺服控制的参数调节有点问题,比如位置增益,速度增益等配合不好
(5)伺服电机的编码器故障反馈量不对(或选型不对)
(6)伺服驱动控制器有干扰信号.驱动板有尘造成临界短路状态
(7)电机本身绕阻出现了问题
二十、安川伺服电机08A的抖动,怎么办?
安川伺服电机08A的,机床在运行时会抖动,有时会尖叫,试过F001调刚性,出厂时是6,现在改5,4都没用,机床用的新代的系统,系统里也改过刚性增益也没有什么大的变化。
首先要确定是不是伺服的问题,如果确实是伺服的问题,那么刚性调节一般多少会起一点作用,如果效果实在不行,就用手动调整速度环,Pn110.0=2;Pn103=x%(x根据机器情况设定,如果不知道设定100,200试试也无妨);然后加大速度环增益Pn100(1-2000),或者减小微分时间PN101(15-51200)。如果还是不行,那就是上位系统的问题了。
二十一、交流伺服电机抖动故障怎么解决?
(1)先确定转动部分是否存在问题。比如连轴器,导轨等使伺服电机转动受力变动过大致电机抖动
(2)转动没问题就是参数问题,把速度环参数,位置环参数调小。调整(从小到大)
(3)驱动器有无报警
(4)编码器坏有时都会抖动
二十二、伺服电机运行时抖动,怎么处理?
工作台上的伺服电机,在调试的时候曲线很正常,一旦带了负载,运动的时候就会在运动方向上前后抖动,出料的时候就会看到料块上切割面有均匀锯齿。
1、电机功率多大?转子转动惯量多大?
2、是否带了减速器?系统是否做了消除间隙的处理?
3、传统系统等效到电机轴上的转动惯量多大?还有一些其它相关参数。
三洋的伺服驱动器,全闭环,调整了电流环参数,电流前馈,P参数和I参数,负载惯量比调到400左右,用联轴器连接的丝杆,打激光干涉仪丝杆运动方向是测过的,不带载的情况下系统分析曲线在700和2000赫兹有共振,用滤波器滤除了,带负载情况下负载惯量比越大产生的锯齿越密集,降低刚性可以使情况好转但是不能达到设备所要求的性能。
(1)系统是否做了消除间隙的处理?
(2)“降低刚性可以使情况好转”,系统刚性如何降低的?
(3)“不带载的情况下系统分析曲线在700和2000赫兹有共振”,带负载能否测一下系统是否仍有扭振?
(4)伺服扭矩不够?
(5)滚珠丝杠的导程不对?
(6)负载的转动惯量过大,导致电机运行时过冲了?
二十三、AB伺服电机发烫,抖动,怎么处理?
电机的加速度减速度都在1万以上,电机有发烫现象(其他几台正常的都基本没有温度),电机是垂直安装,下降距离很短,停止时跳动很厉害,像有弹性。
(1)应该是轴承有径向间隙了
(2)垂直安装的伺服电机要带刹车,你加减速快,可能是电机刹车发热了
(3)电机抖动有可能是刚性问题
(4)编码器位置偏移了零点
二十四、伺服电机在转动的过程中还有停下后老是颤动怎么办?
用伺服电机带动转盘转动,每转180度停一次,但是停下后转盘老是颤动,好像伺服电机的轴锁的不是很牢固,怎么办呢?
这个好像惯量大,可以更换大功率电机或加减速机。
二十五、伺服电机抖动和异常声音,怎么办?
机械部分拆开后并无异常,连接轴也没有摩擦的痕迹。拆下电机以后让其空载转动时无任何异常。但是一旦与机械部分连接后便会出现强烈抖动和异常声音。
机械共振主要是因为丝杆等机械部分与伺服里面的频率合上,产生的机械共振现像,一般的伺服控制器里面有设置屏蔽相应的共振频率。
还有就是伺服控制器里面的PID值也会引起机械共振,你可以把PID值先自动演算一下,如果还是不能正常工作可以手动修改至伺服控制器正常,这两点一般可以解决伺服引起的共振现象。
二十六、松下伺服电机抖动怎样处理(负载稍大电机抖动)?
1.惯量比设定是否得当,有可能电机惯量选型偏小
2.增益设定是不是过高导致
二十七、三菱伺服电机抖动的可能原因?
1、伺服负载过大(伺服选小了)
2、伺服刚性没调好
3、丝杆没选好
ROTEX,,与KTR+ROTEX区别?
你应该说的是KAT-TUN是的ハKTR是 KTROOM KAT-TUN所有的的 KAL 全写是 KAT-TUN ALL LOVE也是KAT-TUN所有的
船舶主机安装应注意哪些问题?
船舶主机安装应注意哪些问题?
第一、注意安全。安全工作是重中之重!安全第一,任何时候都不得马虎,需要高度重视!
第二、熟练掌握所有设备的有关参数与全部的安装工艺技术等,熟练把握现场安装经验,有关情况分章节说明如下:
第一章 船舶主机的安装
学习目标
知识目标
1.掌握主机安装的工作内容;
2.学习基座准备的内容和方法;
3.学习主机吊装的方法;
4.掌握主机定位的方法:根据轴系法兰定位;按轴系理论中线定位;
5.学习土机固定的方法;
6.掌握大型低速柴油机的安装方法。
能力目标
1,会准备基座;
2,能吊运主机;
3.会定位主机;
4.能固定主机;
5.能进行大型低速柴油机的解体和部件组装:机座、主轴承和曲轴、机架、气缸体、活
塞装置及缸盖。
第一节 概述
船舶主机是船舶动力装置的核心,其安装质量的优劣将直接关系到动力装置的正常运行和船舶的航行性能。
主机的类型主要有柴油机、汽轮机和燃气轮机,不同类型的主机,有着不同的结构特点和工作方式,在船上安装时应按不同的机型而采用相应的工艺方法。柴油机是目前应用最广泛的一种主机,本章主要讨论柴油机主机的安装工艺。
主机发出的功率通过轴系传递给推进器,主机与轴系相连接,主机、轴系和推进器组成一个有机的整体,因而主机的安装应与轴系的安装一并考虑。造船时,主机与轴系的安装顺序无外乎有三种:先安轴系再安主机;先安主机再安轴系;主机和轴系同时安装。在船台上先安装轴系,船舶下水后,再以轴系为基准安装主机,这是长期以来一直沿用的一种安装工艺。因为这种方法容易使主机的输出轴回转中心与轴系的回转中心同轴,同时避免了船舶下水后船体变形的影响。这种方法的缺点是生产周期较长。在船台上,以轴系理论中心线为基准,安装主机和轴系,可以先安装主机,然后再根据主机的实际位置确定轴系的位置并进行轴系的安装。也可以主机和轴系同时安装。这种方法,在主机定位后,可以进行管系和各种附属设备的安装,扩大了安装工作面,缩短了生产周期。但是这种方法往往难以避免船舶下水后船体变形带来的影响,而在安装轴系时由于主机已固定,尾轴也已固定,两者固定所产生的偏差必然要由轴系来消化,约束增加,安装难度较大。在工程实践中,究竟采取哪种安装顺序,要视造船总工艺、工厂的实际条件和工期而定。
主机安装后,必须保证主机与轴系的相对位置正确,并且在运转时保持这种相对位置关系。为了防止其他因素对主机安装质量的影响,在主机安装之前,必须完成下列工作:
(1)主机和轴系通过区域内船舶结构,上层建筑等重大设备调运安装工作基本完成。
(2)机舱至船尾的所有隔舱及双层底舱的试水工作均应结束。
主机安装的工作内容可归纳为如下几个方面:
(1)主机基座(底座)的准备。
(2)主机的定位(校中)。
(3)主机的固定。
(4)质量检验。
第二节 主机基座(底座)的准备
主机是通过垫片或减振器安装在船体基座上的,基座是与船体直接相连的支承座。根据不同的机型,基座一般有两种形式。对于大型低速柴油机,没有单独的墓座,机舱双层底是由加厚的钢板焊接而成,主机的机座就落位在此加厚的钢板上。中小型柴油机,通常带有凸出的油底壳,因此在双层底上,还需焊接一个由型钢和钢板焊接起来的金属构件。在面板上,为了减少加工面而焊有固定垫片,固定垫片与柴油机机座之间配有活动垫片,用以调整主机的高度,主机与基座用螺栓固定在一起。
第二章 船舶轴系的安装
学习目标
知识目标
1.掌握轴系的作用和组成及典型结构的安装要求;
2,掌握轴系零部件制造与装配的技术条件;
3.掌握轴系安装工艺的主要内容;
4.学习确定轴系理论中心线的方法:钢丝拉线法、光学仪器法;
5.学习轴系孔的镗削:加工圆线及检验圆线的确定、镗孔的技术要求、镗排装置、镗
排机在船上的安装、镗孔工艺;
6.学习尾轴管装置的安装;
7.掌握轴系校中的含义和方法:轴系按直线性校中、轴系按轴承上允许负荷校中、船
舶轴系合理校中;
8.学习轴系安装的方法:轴系的连接、中间轴承的紧固、安装质量的检验。
能力目标
1.会确定轴系理论中心线;
2.会镗削轴系孔;
3.能安装尾轴管装置;
4.能校中轴系;
5.能正确安装轴系。
第一节 船舶轴系概述
一、轴系的作用及组成
船舶轴系的作用是将主机发出的功率传递给螺旋桨;螺旋桨旋转后产生的轴向推力通过轴系传给推力轴承,再由推力轴承传给船体,使船舶前进或后退。因此,船舶轴系是船舶动力装置中的重要组成部分之一。轴系工作的好坏将会直接影响船舶的正常航行,并对主机的运转有直接关系。所以,对轴系的制造与安装都有较高的技术要求,都要符合技术标准的有关规定。
船舶轴系,通常指从主机曲轴末端(或减速齿轮箱末端)法兰开始,到尾轴(或螺旋桨轴)为止的传动装置。其主要部件有:推力轴及其轴承,中间轴及其轴承,尾轴(或螺旋桨轴)及尾轴承,人字架轴承,尾轴管及密封装置,各轴的联轴节。有些船舶还另有短轴,用来调整轴系长度。此外,还有隔舱壁填料函和带式制动器等。
轴系的结构种类很多,有常用型螺旋桨推进装置轴系;可调螺距螺旋桨推进装置轴系;正反转螺旋桨推进装置轴系;可回转式螺旋桨推进装置轴系等。它们相互之间区别很大,各不相同。但就目前我国民用船舶来看,除工程船舶与内河某些小船之外,大多数属于常用型螺旋桨推进装置轴系。因此,本书仅介绍常用型螺旋桨推进装置轴系的制造与安装工艺。
在民用船舶中,通常采用单轴系或双轴系,而客轮一般为双轴系。单轴系位于船中纵剖面上,而双轴系则位于船的两侧,并相互对称。双轴系船舶的操纵性能比较好,动力装置的生命力比较强,用于内河船舶居多,但双轴系船舶的结构复杂,建造的工作量大,成本也高。
根据主机及螺旋桨布置的要求,有时轴线与基线成倾斜角。或与纵剖面成偏斜角β。轴系的倾斜使主机处于不良的工作状态,降低了螺旋桨的有效推力。为了使螺旋桨的有效推力不致显著下降,以及保证主机工作的安全可靠,一般α角限制在0°~5°之间,而β角限制在0°~3°之间。对于一般快艇,由于条件的限制,α角可达12°~16°,但很少超过16°。对于单轴系船舶,通常轴系与垂线(或龙骨线)是平行的,即。α=0°,但双轴系船舶则很少能满足无倾斜角的要求。
在船舶总休设计时,机舱可以布置在中部,也可以布置在尾部。当机舱布置在中部时,轴系就比较长;当机舱布置在尾部时,轴系就比较短。 —般来说,具有两根或两根以上中间轴的轴系.称为长轴系,中机刑的大型船舶的轴系长度有的达100m,其中间轴多达十余根;只有一根,其长度可短至7~8m,或者没有中间轴的轴系称为短轴系。长轴系的柔性比较好,比较容易凋整,但调整、安装的工作量大。短轴系的刚性比较大,安装的要求也就高一些。双轴系船舶,左右主机回转方向必须相反,当船舶在正车前进时,右舷主机一般为右转,而左舷主机为左转。如果主机回转方向一致,则可通过换向机构来实现。当一台主机驱动左右两套轴系时,也可安装换向机构来使左右轴系反向旋转。
当主机或减速箱内部设有推力轴承时,轴系就可以不必设置独立的推力轴承了。推力轴及其轴承的作用有两点:一是承受螺旋桨所产生的轴向推力,并传递给船体,使船舶产生运动;二是防止螺旋桨产生的轴向推力直接推动主机曲轴,使曲轴发生移动及歪斜,而损坏主机的机件。
常见的推力轴承有两种结构形式,一种是旧船上常见的马蹄片式推力轴承;另一种是单环推力轴承(又称米歇尔式推力轴承),前者已被淘汰。
隔舱壁填料函的作用是在轴系通过舱壁时,使舱壁保持水密,以保证船舶的抗沉性。当机舱布置在尾部,就不用隔舱壁填料函。
在双轴系船舶中,轴系一般带有制动机构,这是为了在航行中需要停下某一套动力装置时,就用制动机构把它制动住,使轴系不因水流影响而转动。此外,制动机构也可以帮助主机缩短换向时间。
尾轴管一般都有前后两个轴承,前轴承短,后轴承较长。有的大型船舶尾轴管比较短,因此只设置一个尾管轴承。这时,尾轴首端往往共设置一个中间轴承式的前轴承,便于维护管理。也有些船舶的尾轴管较长,设有三个尾管轴承。尾管轴承绝大多数采用滑动轴承。当尾管轴承采用铁梨木、橡胶、层压板和尼龙等材料时,则用水作为冷却润滑剂。这时,尾轴通常都用铜质保护套或玻璃钢保护层来保护尾轴轴颈,以防止海水对尾轴的锈蚀。在老式船上多采用舷外水自然冷却,这种冷却方式容易造成水流不畅的“死角”,又往往由于泥沙进入尾轴管而造成轴和轴承的急剧磨损。因此,现代的船舶都已采用压力水强制润滑冷却,以克服上述缺陷。
第三章 船舶轴系零部件的装配
学习目标
知识目标
1.掌握可拆联轴节的种类及其安装工艺;
2.掌握轴系配对的工艺方法;
3.掌握尾轴管装置的装配方法。
能力目标
1.会装配可拆联轴节;
2.会对接平轴;
3.会装配尾轴管装置。
第一节 可拆联轴节的装配
在安装滚动轴承的轴系中,或尾轴必须从船体外部进行安装的船舶,广泛使用可拆联轴节。船舶轴系可拆联轴节的形式很多,主要有法兰可拆联轴节、夹壳形联轴节、液压法兰联轴节及液压可拆套筒联轴节等。
一、法兰式可拆联轴节的加工和装配
法兰式可拆联轴节常被用于尾轴与中间轴的连接,它是属于刚性联轴节的一种形式。根据连接法兰上螺栓孔的形状,它又可分为圆柱形螺栓可拆联轴节及圆锥形螺栓可拆联轴节两种。
圆柱形螺栓可拆联轴节,这种联轴节是带有法兰边的,因此称为法兰式可拆联轴节。
1,联轴节加工的技术要求
(1)联轴节的外表面及法兰端面均应先粗加工,并留有3~5mm余量,而内孔则与轴的锥体部分配合加工(加工时可采用锥度样板测量)。联轴节与轴的锥体部分研配装妥后,将尾轴上车床,再精加上联轴节外圆及法兰端面。联轴节的粗糙度和其他技术要求与整体式法兰相同。
(2)联轴节上键槽的宽度、高度及与轴线的平行度都与轴上键槽的加工要求相同。
2.联轴节的装配技术要求
(1)联轴节锥孔与轴锥体接触应良好,接触面积要求在75%以上,用色油检查,每25mm×25mm内,不得少于三点。厚薄规检查锥体大端时,0.03mm的厚薄规插入深度应不超过3mm。接触面上允许存在1~2处面积不大的空白区,但总面积应小于锥体表面积的15%,最大的长度及宽度不超过该处锥体直径的1/10,且不得分布在同一轴线或圆周线上。
(2)平键与轴上键槽两侧面的接触面积不少于75%,与联轴节键槽相配合时,在85%长度上应插不进0.05mm的厚薄规,其余部分应插不进0.1mm的厚薄规。平键与键槽底应接触;接触面不少于30%~40%。
(3)联轴节法兰螺栓装妥后,在接合面90%的周长上应插不进0.05mm的厚薄规,其接触面积不少于75%。
(4)轴的锥体部分的螺纹,当联轴节装好后应缩进锥孔内一个距离α。
二、夹壳形联轴节的加工和装配
夹壳形联轴节由两个钢制半圆筒组成,靠夹壳与轴之间的摩擦力及键来传递力矩。夹壳联轴节的横截面尺寸比较小,拆卸时不必移动轴,因此可以安装在不易进入的狭窄地方,但因重量大,使用受到限制。
1.联轴节的加工技术要求
(1)夹壳形联轴节加工后,其内圆的圆度和圆柱度应符合表3-1的要求。
(2)当夹壳长度每超出轴颈一倍时,则锥度误差允许增加0.01mm。其内圆直径应较轴颈大0.04~0.08mm。两半联轴节的间距应为轴颈的3%~5%。
(3)内圆表面粗糙度Rα不大于3.2μm。
2.联轴节的装配技术要求
(1)轴向键必须进行修配,其装配质量要求与法兰式可拆联轴节的平键要求相同。
(2)夹壳联轴节的推力环应经修配,使内圆与轴槽紧密配合,接触面积要求在60%以上。两侧面轴槽或壳槽配合处应插不进0.05mm的厚薄规。
(3)装配后推力环外圆与夹壳内孔之间允许有0.2~0.4mm的间隙。
第四章 螺旋桨的装配与安装
学习目标
知识目标
1.学习螺旋桨的加工方法;
2.学习螺旋桨的装配方法;
3.学习螺旋桨的安装方法。
能力目标
1.会加工螺旋桨;
2.能进行螺旋桨的装配;
3.能安装螺旋桨。
第一节 螺旋桨的加工与装配
一、螺旋桨的概况
1.基本概念
螺旋桨是最常见的船舶推进装置,它一般有3~6个叶片,大部分螺旋桨叶片是与桨壳一起铸出的,但也有制成可拆卸的,并用螺栓将叶片固定在桨壳上,称为组合式螺旋桨。中小型船舶常为3~4个)个叶片,大型船舶常为4~5个叶片,螺旋桨的作用是将船舶主机所发出的功率转变为推动船舶运动的推力。它的加工和装配质量直接影响到船舶的航行性能和安全。螺旋桨几何形状的正确性是保证质量的主要因素,其中以螺旋桨直径和螺距尤为重要。
三叶螺旋桨。它与尾轴相连接的部分称为桨壳。由船尾向船首看,所见到的叶片面称为压力面,是一个螺旋面,其反面称为吸力面。压力面又称叶面,吸力面又称叶背;当主机正转时,叶片上先入水的叶边称为导边,同一叶片上相对应的另一边称为随边。
由螺旋桨中心至叶片边缘距离最远的一点为半径,所作出的圆的直径称为螺旋桨直径,以D表示。叶面上任何一点环绕螺旋桨轴线一周后升高的距离称为螺旋桨的螺距H。螺旋桨按其螺距来分可以分为等螺距螺旋桨和变螺距螺旋桨两种。前者在它的叶面上各半径截面上的螺距都是相等的,后者则不是都相等的,往往在一定的半径范围内螺距随半径的增大而增大。变螺距螺旋桨效率较高,但制造和加工叶面较麻烦。另外还有一种可调螺距螺旋桨,它的叶片是活络安装在桨壳上的,并可通过内部传动机构驱动叶片转动,以使螺距变化来改变航速。
自尾向首看,正车转动时,螺旋桨沿顺时针方向转动的称右旋螺旋桨,沿逆时针方向转动的称左旋螺旋桨。对双桨船,正车时向舷外方向转动的称外旋螺旋桨,反之称内旋螺旋桨,通常双桨船采用外旋,以防止水中漂浮物被卷入而卡住。 由于桨叶承受推力,故叶面与叶背间必须有一定的厚度,桨叶切面形状有两种:机冀形与弓形,切面两端点间的距离b称弦宽,两端点间的连线称弦线。切面最大厚度以t表示。弓形切面的t,在弦宽的中点(b/2)处,机翼形切面的t约在距 第五章 船舶辅机和锅炉的安装
学习目标
知识目标
1.了解辅机一般的用途、种类;
2.了解甲板机械的用途、种类;
3.了解锅炉的用途、种类;
4.叙述船舶辅机和锅炉在船上的一般安装工艺及注意事项。
能力目标:
1.会进行一般辅机在船上的安装工艺;
2.会进行甲板机械在船上的安装工艺;
3.会进行锅炉在船上的安装工艺;
4.会对常用粘结剂进行调和及使用。
船舶辅机即船舶辅助动力机械,是为舶的正常运行、作业、生活和其他需要而提供能量的成套动力设备。
第一节 一般辅机在船上的安装
一般辅机在船上的种类很多,常见的有船用泵如离心泵、螺杆泵、喷射泵等,船用空压机、通风机、船舶制冷装置、船舶空气调节装置、油分离机、船舶防污装置、海水淡化装置等;这些辅机在船亡安装质量的好坏,直接影响着船舶的正常运行。
一、船舶辅机运往船上安装的形式
现代船舶辅机主要是以两种形式运到船上安装。
(1)将辅机组合安装成机组。即将动力部分与工作部分安装在一公共底座上,如3S100D型螺杆泵(图5-1所示),或在一机壳上装有动力部分,如3LU45型螺杆泵等。
(2)将辅机组合安装成功能性单元。DRY-5型油分离机就是一例。这种形式较前者更为先进,在船上安装时,只需将其定位紧固后,将管路、电源接通即可使用,甚是方便,国内有些船厂已经使用,效果甚佳。
以上所述两种形式较之单个机械上船安装具有如下较好的经济技术效果:
(1)将大部分钳工装配工作从船上移到车间进行,这样可以充分利用车间的设备和有利空间条件以提高安装质量和劳动生产率;
(2)由于有定型的产品供应或事先装配,造船时只需要整台吊装即可,这样可大大缩短造船周期;3)由于辅机本身有公共底座或有一个机壳,这样町使与之相结合的船体基座上平面的加工要求降低,垫片甚至可以不刮磨,大量减少了繁重的钳工劳动,而且便于安装减振器(这对军用产品尤为重要,因为舰艇上的辅机很多都是安装在减振器上的)。
二、辅机安装有关工艺项目
1.基座的准备
辅机一般都是通过垫片或减振器安装在甲板或船体的基座上的。对甲板支承部分不要加工,而对基座的支承表面的加工要求也不高,一般说来,舰艇比民用船舶丘的要求稍高一些。对机座面板的要求如下:
(1)基座面板的不平度,1m长度内不得大于3mm,但全长或全宽中均不得超过6mm;
(2)基座面板的长度及宽度公差为+10~-5mm;
(3)在基座面板上作对角线检查时,两对角线应相交,其不相交度应符合有关规定。
参考资料来源于网络。
关于KTR-ROTEX65联轴节1B和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。