包含KTR-GEAREX85联轴节高功率的词条

KTR版本1.jpg

本文目录一览:

交流伺服驱动器报警是怎么回事

交流伺服驱动器报警是怎么回事?

下面就通过伺服相关内容来举例关于出现故障报警应该怎么去调整维修。

伺服驱动器维修:

一、数控铣床,打开电源和系统,伺服电机嗡嗡响,响几分钟之后伺服电机会发热,调小刚性后不响了,但铣出来的圆不像圆,该怎样调?

应该是几台驱动器设置的增益不同,造成电机在不同的转速下自激。可以把待测的驱动器与参考驱动器的参数设置成一致再试一下。惯量比看了吗?增益是一方面,但也不要忽略了惯量。

二、伺服驱动器,通过调节三环PID控制伺服电机,噪音比较大,但电机并没有震动,载波频率是10KHZ,电流采样速度是0.1us一次,为什么?

噪音的原因:因为没有做输入脉冲滤波,所以才有那个噪音。

三、电机启动不起来而且噪声大振动大是什么原因?

1、 脱开载荷;

2、 用手盘动,确认灵活、无异常;

3、 空载启动实验;

4、 检查负载情况。

先看看是不是动平衡出了问题,这是电流声音,其次看电机轴承,最后是驱动器参数,多数是轴承松懈或坏。

四、电动机运行有异常噪音,什么原因和怎么处理?

1、当定子与转子相擦时,会产生刺耳的“嚓嚓”碰擦声,这多是轴承有故障引起的。应检查轴承,损坏者更新。如果轴承未坏,而发现轴承走内圈或外圈,可镶套或更换轴承与端盖。

2、电动机缺相运行,吼声特别大。可断电再合闸,看是否能再正常起动,如果不能起动,可能有一相熔丝断路。开关及接触器触头一相未接通也会发生缺相。

3、轴承严重缺油时,从轴承室能听到“咝咝”声。应清洗轴承,加新油。

4、风叶碰壳或有杂物,发出撞击声。应校正风叶,清除风叶周围的杂物。

5、笼型转子导条断裂或绕线转子绕组接头断开时,有时高时低的“嗡嗡”声,转速也变慢,电流增大,应检查处理。另外有些电动机转子和定子的长度配合不好,如定子长度比转子长度长得太多,或端盖轴承孔磨损过大,转子产生轴向窜动,也会产生“嗡嗡”的声音。

6、定子绕组首末端接线错误,有低沉的吼声,转速也下降,应检查叫正。

电机噪声很大,是什么原因?如何处理?

原因1:电机内轴承间隙大 ;处理方法:更换轴承。

原因2:转子扫堂  ;处理方法:重新修理定子、转子。

原因3:磁钢松动 ;处理方法:重新粘结磁钢。

原因4:电机机体偏转;处理方法:重新调整机体;

原因5:电机转向器表层氧化、烧蚀、油污凹凸不平、换向片松动  。处理方法:清洗换向器或焊牢换向片。

原因6:碳刷松动、碳刷架不正;处理方法:调整。

五、电机有噪声大,什么原因?怎么解决?

依据电机噪声发生的分歧方法,大致可把其噪声分为三大类:①电磁噪声;②机械噪声;③空气动力噪声。

电磁噪声首要是由气隙磁场效果于定子铁芯的径向重量所发生的。它经过磁轭向别传播,使定子铁芯发生振动变形。其次是气隙磁场的切向重量,它与电磁转矩相反,使铁芯齿部分变形振动。当径向电磁力波与定子的固有频率接近时,就会惹起共振,使振动与噪声大大加强,甚至危及电机的使用寿命。

根据电磁噪声的成因,我们可采用下列办法降低电磁噪声。

⑴尽量采用正弦绕组,削减谐波成份;

⑵选择恰当的气隙磁密,不该太高,但过低又会影响资料的应用率;

⑶选择适宜的槽共同,防止呈现低次力波;

⑷采用转子斜槽,斜一个定子槽距;

⑸定、转子磁路对称平均,迭压严密;

⑹定、转子加工与装配,应留意它们的圆度与同轴度;

⑺留意避开它们的共振频率。

六、新买的电,就是电机和减速机连在一起的那种 SEW的,主要是靠 PLC和变频器控制,使用的转速很低,大约在25赫兹左右,感觉噪音很大,机械上的主动链轮和被动链轮的角度没有问题,电机底座固定的也很牢固,散热风扇和防护罩没有刮擦,爆闸也是松开的,但是一运转起来噪音非常的大,就好像小区里面变压器发出的声音,为什么?

那就是变频器驱动电机所特有的电磁噪音(吱吱的),没有办法消除掉,但可以减少一点,就是修改变频器参数:把那个载波频率加大一点,噪音就会小一点的。但是加大变频器的载波频率,会导致变频器发热。25赫兹左右低频原本很烦人,刮擦一般音频较高,底座固定的也很牢固要看什么底座,金属板声音会比较大,负载大声音会更大,用螺丝刀顶住耳朵仔细听听音源来自什么地方,要是安装没有什么问题,电机声音大往往是轴承不良,新的应该不至于,可能原本就是这样的,运行正常就行。另外就是控制问题。

七、伺服电机运转时有异响和发热是什么原因?

异响是电机的负载过重,电机的转矩小于负载所需转矩,而电机的堵转转矩大于负载所需转矩。发热就是电机的电流过大(一般发热很正常),若是很烫,或者堵转时间过长很容易烧毁电机(电机退磁)。直白说就是小马拉大车很费力,为了拉动小马就更加的费劲拉车,所以会发热(增加电流),拉车很费劲(异响)。异响是因为伺服电机轴承坏了,发热是电流大,实质是伺服电机为了克服电机轴震动而产生的异常大电流,估计电机坏了,需尽快处理,不然故障会扩大。

八、西门子伺服电机会嗡嗡响是什么问题?

伺服电机出现这种问题有多种原因,一是伺服电机编码器零位不准,也就是编码器零位漂移,二是驱动器刚性不足或参数有问题,三是伺服电机动力线接的可能有问题呀,伺服电机的动力线是不能搞错的,可调换几次看看。四是编码器安装问题或编码器自身有问题,需要认真检查,有同样的伺服电机和驱动器最好相互调换一下试试看。伺服电机有问题,最好找专业人士检修。系统与驱动器故障,电机本身故障;驱动器与实际进给系统的匹配未达到最佳值而引起的,通常只要通过驱动器的速度环增益与积分时间的调节即可进行消除,具体方法为:

1)根据驱动模块及电动机规格,对驱动器的调节器板的S2进行正确的电流调节器设定。

2)将速度调节器的积分时间Tn调节电位器(在驱动器正面),逆时针调至极限(Tn≈39ms)。

3)将速度调节器的比例Kp调节电位器(在驱动器正面),调整至中间位置(Kp≈7~10)。

4)在以上调整后,即可以消除伺服电动机的尖叫声,但此时动态特性较差,还须进行下一步调整。

5)顺时针慢慢旋转积分时间Tn调节电位器,减小积分时间,直到电动机出现振荡声。

6)逆时针稍稍旋转积分时间Tn调节电位器,使电动机振荡声恰好消除。

7)保留以上位置,并作好记录。本机床经以上调整后,尖叫声即消除,机床恢复正常工作。

九、电机扫堂是什么原因?

电机扫堂就是电机的转子与定子绕组里的硅钢片发生摩擦,一般是轴承坏了,还有可能是轴承走外缘,端盖的轴承位置松动。也有可能是转子走内缘,转子上的轴承位置坏了。最小的一种可能是转子弯曲造成的。轴承磨损或者是轴承座松动会造成的转子偏心。

电机轴上支承圈磨损严重、转子铁心位移,或因其他原因使定子铁心位移,造成电机锥形转子与定子间隙太小发生扫膛。电机严禁“扫膛”,当发生扫膛后,应拆下支承圈进行更换,调整定子转子锥面之间的间隙使之均匀,或送修。

十、交流伺服电机在运行中会出现抖动的现象,问题需怎样解决?

E-1E:指检查不到遥控套准的实际值。

E-2E:指不能传送正常值。

E-3E:指不能检查当前所选单元的状态。

E-4E:指伺服电机当前的运行状态不能被确认。

E-5E:指伺服电机位置电位计不在调整的范围内。

抖动是不正常的吧,可能是由于导轨不顺畅,或者电源不足。把功率调一下,调小点。

十一、伺服控制器一般使用中,都是调节哪些参数的?

不同品牌使用的参数和参数定义都有所不同。以下以安川伺服调试做一总结。

1、 安川伺服在低刚性(1~4)负载应用时,惯量比显得非常重要,以同步带结构而论,刚性大约在1~2(甚至1以下),此时惯量比没有办法进行自动调谐,必须使伺服放大器置于非自动调谐状态;

2、 惯量比的范围在450~1600之间(具体视负载而定)

3、 此时的刚性在1~3之间,甚至可以设置到4;但是有时也有可能在1以下。

4、 刚性:电机转子抵抗负载惯性的能力,也就是电机转子的自锁能力,刚性越低,电机转子越软弱无力,越容易引起低频振动,发生负载在到达指定位置后来回晃动。刚性和惯量比配合使用,如果刚性远远高于惯量比匹配的范围,那么电机将发生高频自激振荡,表现为电机发出高频刺耳的声响,这一切不良表现都是在伺服信号(SV-ON)ON并且连接负载的情况下。

5、 发生定位到位后越程,而后自动退回的现象的原因:位置环增益设置的过大,主要在低刚性的负载时有此可能。

6、低刚性负载增益的调节:

A、将惯量比设置为600;

B、将Pn110设置为0012;不进行自动调谐;

C、将Pn100和Pn102设置为最小;

D、将Pn101和Pn401设置为刚性为1时的参数;

E、然后进行JOG运行,速度从100~500;

F、进入软件的SETUP中查看实际的惯量比;

G、将看到的惯量比设置到Pn103中;

H、并且会自动设定刚性,通常此时会被设定为1;

I、 然后将SV-ON至于ON,如果没有振荡的声音,此时进行JOG运行,并且观察是否电机产生振荡;如果有振荡,必须减少Pn100数值,然后重复E、F重新设定转动惯量比;重新设定刚性;注意此时刚性应该是1甚至1以下;

J、在刚性设定到1时没有振荡的情况下,逐步加快JOG速度,并且适当减少Pn305、Pn306(加减速时间)的设定值;

K、在多次800rpm以上的JOG运行中没有振荡情况下进入定位控制调试;

L、首先将定位的速度减少至200rpm以内进行调试;

M、并且在调试过程中不断减少Pn101参数的设定值;

N、如果调试中发生到达位置后负载出现低频振荡现象,此时适当减少Pn102参数的设定值,调整至最佳定位状态;

O、再将速度以100~180rpm的速度提高,同时观察伺服电机是否有振动现象,如果发生负载低频振荡,则适当减少Pn102的设定值,如果电机发生高频振荡(声音较尖锐)此时适当减少Pn100的设定值,也可以增加Pn101的数值;

P、说明:Pn100   速度环增益     Pn101 速度环积分时间常数   Pn102  位置环增益Pn103  旋转惯量比   Pn401  转距时间常数。

7、在定位控制中,为了使低刚性结构的负载能够减少机械损伤,因此可以在定位控制的两头加入一定的加减速时间,尤其是加速时间;通常视最高速度的高低,可以从0.5秒设定到2.5秒(指:0到最高速的时间)。

8、电机每圈进给量的计算:

A、电机直接连接滚珠丝杆: 丝杆的节距;

B、电机通过减速装置(齿轮或减速机)和滚珠丝杆相连: 丝杆的节距×减速比(电机侧齿轮齿数除以丝杆处齿轮齿数);

C、电机+减速机通过齿轮和齿条连接: 齿条节距×齿轮齿数×减速比;

D、电机+减速机通过滚轮和滚轮连接: 滚轮(滚子)直径×π×减速比;

E、电机+减速机通过齿轮和链条连接: 链条节距×齿轮齿数×减速比;

F、电机+减速机通过同步轮和同步带连接: 同步带齿距×同步带带轮的齿数×(电机侧同步轮的齿数/同步带侧带轮的齿数)×减速比;   共有3个同步轮,电机先由电机减速机出轴侧的同步轮传动至另外一个同步轮,再由同步轮传动到同步带直接连接的同步轮。

9、负荷惯量:

A、电机轴侧的惯量需要在电机本身惯量的5~10倍内使用,如果电机轴侧的惯量超过电机本身惯量很大,那么电机需要输出很大的转距,加减速过程时间变长,响应变慢;

B、电机如果通过减速机和负载相连,如果减速比为1/n ,那么减速机出轴的惯量为原电机轴侧惯量的(1/n)2;

C、惯量比:m=Jl /Jm   负载换算到电机轴侧的惯量比电机惯量;

D、Jl (5~10)Jm;

E、当负载惯量大于10倍的电机惯量时,速度环和位置环增益由以下公式可以推算  Kv=40/(m+1)    7=Kp=(Kv/3)。

10、一般调整(非低刚性负载):

A、一般采用自动调谐方式(可以选择常时调谐或上电调谐);

B、如果采用手动调谐,可以在设置为不自动调谐后按照以下的步骤;

C、将刚性设定为1,然后调整速度环增益,由小慢慢变大,直到电机开始发生振荡,此时记录开始振荡的增益值,然后取50~80%作为使用值(具体视负载机械机构的刚性而论);

D、位置环增益一般保持初始设定值不变,也可以向速度环增益一样增加,但是在惯量较大的负载时,一旦在停止时发生负载振动(负脉冲不能消除,偏差计数器不能清零)时,必须减少位置环增益;

E、在减速、低速电机运行不匀时,将速度环积分时间慢慢变小,知道电机开始振动,此时记录开始振动的数值,并且将该数据加上500~1000,作为正式使用的数据;

F、伺服ON时电机出现目视可见的低频(4~6/S)左右方向振动时(此时惯量此设定值很大),将位置环增益调整至10左右,并且按照C中所述进行重新调整。

11、调整参数的含义和使用:

A、位置环增益:  决定偏差计数器中的滞留脉冲数量。数值越大,滞留脉冲数量越小,停止时的调整时间越短,响应越快,可以进行快速定位,但是当设定过大时,偏差计数器中产生滞留脉冲,停止时会有振动的感觉;  惯量比较大时,只能在速度环增益调整好以后才能调整该增益,否则会产生振动;

B、位置环增益和滞留脉冲的关系:e=f / Kp   其中e是滞留脉冲数量;f是指令脉冲频率;Kp是位置环增益;    由此可以看出Kp越小,滞留脉冲数量越多,高速运行时误差增大;Kp过高时,e很小,在定位中容易使偏差计数器产生负脉冲数,有振动;

C、速度环增益:  当惯量比变大时,控制系统的速度响应会下降,变得不稳定。一般会将速度环增益加大,但是当速度环增益过大时,在运行或停止时产生振动(电机发出异响),此时,必须将速度环增益设定在振动值的50~80%。

D、速度积分时间常数:  提高速度响应使用;提高速度积分时间常数可以减少加减速时的超调;减少速度积分时间常数可以改善旋转不稳定。

十二、伺服电机抖动,怎么办?

伺服电机为珠海运控的,当上方连杆没装上时,一切看起来正常;一旦连杆装上以后,电机就自己左右摇摆,参数设置半天也没整好。注:未接有减速器这个现象说明两个问题:

1、负载惯量远大于电机本身惯量;

2、两部分连接的刚度较低,使负载产生了谐振。

在这种情况下,系统只能调的很软,也就是刚性要调低,反应速度要减慢。具体的方法是关闭积分,同时降低位置环增益。

如要解决也需针对这两个问题下手:

1、推荐增加一个减速机,这样负载折算到电机的惯量就大大降低,日本伺服通常要求负载/电机惯量比小于5:1。

2、负载与减速机的连接要牢固,增加刚度。

以上两个措施要同时使用才好,如果负载本身刚度低就没办法了。在这个情况下,即使电机不震动了,快速启停时负载也会震动。

十三、怎样解决伺服电机在定位点突然停止引起负载的抖动问题呢?

可以试一下用有加减速脉冲输出指令来做,突然停止引起负载的抖动是转动惯性与减速力矩矛盾的体现,能想办法减轻但不能彻底消除。最有效的办法是到定位点之前给一段时间逐渐减速。这个要从2方面来解决。根本的,伺服的性能与现场调试;PLC发脉冲。

十四、用PLC发送脉冲控制伺服电机,当没有发送脉冲时,有时电机有微小的抖动,怎么办?

1、伺服参数要调整好,主要是:惯量大小,刚性,

2、有的还需要调整位置比例,积分,微分。

十五、用程序步进电机速启动时,会有抖动声无法启动,用伺服电机能解决这种问题?

跟程序关系不大,应是电机转动惯量不够导致,建议换大点的步进或者伺服,伺服可以过载。

十六、伺服电机快速有抖动什么原因?

1、伺服配线:

a.使用标准动力电缆,编码器电缆,控制电缆,电缆有无破损;

b.检查控制线附近是否存在干扰源,是否与附近的大电流动力电缆互相平行或相隔太近;

c.检查接地端子电位是否有发生变动,切实保证接地良好。

2、伺服参数:

a.伺服增益设置太大,建议用手动或自动方式重新调整伺服参数;

b.确认速度反馈滤波器时间常数的设置,初始值为0,可尝试增大设置值;

c.电子齿轮比设置太大,建议恢复到出厂设置;

d.伺服系统和机械系统的共振,尝试调整陷波滤波器频率以及幅值。

3、机械系统:

a.连接电机轴和设备系统的联轴器发生偏移,安装螺钉未拧紧;

b.滑轮或齿轮的咬合不良也会导致负载转矩变动,尝试空载运行,如果空载运行时正常则检查机械系统的结合部分是否有异常;

c.确认负载惯量,力矩以及转速是否过大,尝试空载运行,如果空载运行正常,则减轻负载或更换更大容量的驱动器和电机。

十七、引起伺服电机振动的原因是什么?

1、伺服电机的抖动鸣叫跟本身机械结构(如直流伺服电机经常出现的电刷故障)、速度环问题(速度环积分增益、速度环比例增益、加速度反馈增益等参数设置不当或伺服系统的补偿板和放大板故障)、负载惯量(导轨或丝杆出现问题)、电气(制动没打开,速度环反馈电压不稳)有关。

2、电机不转时很小的偏移会被速度环的比例增益放大,速度反馈产生相反转矩使电机来回抖动。降低积分增益会使机床响应迟缓,刚性变坏。加速度反馈是利用电机速度反馈信号乘以加速度反馈增益(pa.2066)对转矩命令进行补偿实现对速度环振动控制。位置指令脉冲与反馈脉冲不相等时共同产生速度脉冲指令。A=F*Ks,F为指令脉冲频率;Ks是位置环增益;A为加速脉冲。Xe=F/Ks,Xe为位置偏差脉冲。因此增益大速度就大,惯性力就大;增益越大,偏差越小,越易产生振动。 先检查下制动是否打开。在FANUC系统中可以调节以下参数来消除由于参数设置不当引起的振动: pa.2021(负载惯量),pa.2044(加速度比例增益),pa.2066(加速度反馈增益)。

十八、伺服电机叫,而且围绕一点来回震荡是怎么回事?

最近碰到过此类的问题,控制卡控制伺服,仔细观察X轴丝杠在来回的作圆周运动,不是很明白应该调整哪些参数来解决,MR-E的伺服,卡输出1000个脉冲,1个脉冲走10个u。

来回调整速度环和位置环增益试试。我碰到这种情况是因为速度环增益太低,积分因子也比较低造成的。降低驱动器上的位置增益。 目前位置环增益是自动模式,而且最近是想增加位置环增益改善滞留脉冲的影响。那就增加速度环增益试试,不过可能更糟,改个大点儿的电机试试。使用伺服监控软件如何调好伺服的增益? 如何看曲线来分析系统的响应?如果参数调好了,在伺服快定位结束的时候会不会一定会发生超程,这时有微小的振动呢?2号参数的第四位是机械共振频率设置,尽量提高它,应该会有所改善,除非选型不合适,负载的转动惯量远远大于电机转子的转动惯量。一般振荡多是积分作用过强,调节时还可以适当加大位置环比例增益。

十九、引起伺服电机振动的原因是什么?

(1)机械结构不顺畅,机械结构松动

(2)驱动器的刚性参数调的太高,引起共振

(3)伺服功率不够

(4)还有可能是伺服控制的参数调节有点问题,比如位置增益,速度增益等配合不好

(5)伺服电机的编码器故障反馈量不对(或选型不对)

(6)伺服驱动控制器有干扰信号.驱动板有尘造成临界短路状态

(7)电机本身绕阻出现了问题

二十、安川伺服电机08A的抖动,怎么办?

安川伺服电机08A的,机床在运行时会抖动,有时会尖叫,试过F001调刚性,出厂时是6,现在改5,4都没用,机床用的新代的系统,系统里也改过刚性增益也没有什么大的变化。

首先要确定是不是伺服的问题,如果确实是伺服的问题,那么刚性调节一般多少会起一点作用,如果效果实在不行,就用手动调整速度环,Pn110.0=2;Pn103=x%(x根据机器情况设定,如果不知道设定100,200试试也无妨);然后加大速度环增益Pn100(1-2000),或者减小微分时间PN101(15-51200)。如果还是不行,那就是上位系统的问题了。

二十一、交流伺服电机抖动故障怎么解决?

(1)先确定转动部分是否存在问题。比如连轴器,导轨等使伺服电机转动受力变动过大致电机抖动

(2)转动没问题就是参数问题,把速度环参数,位置环参数调小。调整(从小到大)

(3)驱动器有无报警

(4)编码器坏有时都会抖动

二十二、伺服电机运行时抖动,怎么处理?

工作台上的伺服电机,在调试的时候曲线很正常,一旦带了负载,运动的时候就会在运动方向上前后抖动,出料的时候就会看到料块上切割面有均匀锯齿。

1、电机功率多大?转子转动惯量多大?

2、是否带了减速器?系统是否做了消除间隙的处理?

3、传统系统等效到电机轴上的转动惯量多大?还有一些其它相关参数。

三洋的伺服驱动器,全闭环,调整了电流环参数,电流前馈,P参数和I参数,负载惯量比调到400左右,用联轴器连接的丝杆,打激光干涉仪丝杆运动方向是测过的,不带载的情况下系统分析曲线在700和2000赫兹有共振,用滤波器滤除了,带负载情况下负载惯量比越大产生的锯齿越密集,降低刚性可以使情况好转但是不能达到设备所要求的性能。

(1)系统是否做了消除间隙的处理?

(2)“降低刚性可以使情况好转”,系统刚性如何降低的?

(3)“不带载的情况下系统分析曲线在700和2000赫兹有共振”,带负载能否测一下系统是否仍有扭振?

(4)伺服扭矩不够?

(5)滚珠丝杠的导程不对?

(6)负载的转动惯量过大,导致电机运行时过冲了?

二十三、AB伺服电机发烫,抖动,怎么处理?

电机的加速度减速度都在1万以上,电机有发烫现象(其他几台正常的都基本没有温度),电机是垂直安装,下降距离很短,停止时跳动很厉害,像有弹性。

(1)应该是轴承有径向间隙了

(2)垂直安装的伺服电机要带刹车,你加减速快,可能是电机刹车发热了

(3)电机抖动有可能是刚性问题

(4)编码器位置偏移了零点

二十四、伺服电机在转动的过程中还有停下后老是颤动怎么办?

用伺服电机带动转盘转动,每转180度停一次,但是停下后转盘老是颤动,好像伺服电机的轴锁的不是很牢固,怎么办呢?

这个好像惯量大,可以更换大功率电机或加减速机。

二十五、伺服电机抖动和异常声音,怎么办?

机械部分拆开后并无异常,连接轴也没有摩擦的痕迹。拆下电机以后让其空载转动时无任何异常。但是一旦与机械部分连接后便会出现强烈抖动和异常声音。

机械共振主要是因为丝杆等机械部分与伺服里面的频率合上,产生的机械共振现像,一般的伺服控制器里面有设置屏蔽相应的共振频率。

还有就是伺服控制器里面的PID值也会引起机械共振,你可以把PID值先自动演算一下,如果还是不能正常工作可以手动修改至伺服控制器正常,这两点一般可以解决伺服引起的共振现象。

二十六、松下伺服电机抖动怎样处理(负载稍大电机抖动)?

1.惯量比设定是否得当,有可能电机惯量选型偏小

2.增益设定是不是过高导致

二十七、三菱伺服电机抖动的可能原因?

1、伺服负载过大(伺服选小了)

2、伺服刚性没调好

3、丝杆没选好

卷扬机的分类

卷扬机包括建筑卷扬机,同轴卷扬机

主要产品有:JM电控慢速大吨位卷扬机、JM电控慢速卷扬机、JK电控高速卷扬机、 JKL手控快速溜放卷扬机、2JKL手控双快溜放卷扬机、电控手控两用卷扬机、JT调速卷扬机、KDJ微型卷扬机等,仅能在地上使用,可以通过修改用于船上。它以电动机为动力,经弹性联轴节,三级封闭式齿轮减速箱,牙嵌式联轴节驱动卷筒,采用电磁制动。该产品通用性高、结构紧凑、体积小、重量轻、起重大、使用转移方便,被广泛应用于建筑、水利工程、林业、矿山、码头等的物料升降或平拖,还可作现代化电控自动作业线的配套设备。JM系列为齿轮减速机传动卷扬机。适用于建筑安装公司、矿区、工厂的土木建筑及安装工程。

由人力或机械动力驱动卷筒、卷绕绳索来完成牵引工作的装置。

同轴卷扬机:(又叫微型卷扬机)电机与钢丝绳在同一传动轴上,轻便小巧,节省空间(其吨位包括200公斤、250公斤、300公斤、500公斤、750公斤、1000公斤等)。

慢速卷扬机:卷筒上的钢丝绳额定速度约7~12m/min的卷扬机。

快速卷扬机:卷筒上的钢丝绳额定速度约30m/min的卷扬机。

电动卷扬机:由电动机作为动力,通过驱动装置使卷筒回转的卷扬机。

调速卷扬机:速度控制可以调节的卷扬机。

手摇卷扬机:以人力作为动力,通过驱动装置使卷筒回转的卷扬机。

大吨位非标卷扬机:主要用于卷扬、拉卸、推、拖重物。如各种大中型砼、钢结构及机械设备的安装和拆卸。其结构特点是钢丝绳排列有序、有吊安装可靠、适用于码头、桥梁、港口等路桥工程及大型厂矿安装设备.就是一种利用外力(例如电动机)驱动他运转,然后通过电磁制动器和抱死制动器控制其在无动力下不自由运转,同时经过电动机的带动减速后,驱动一个轮盘运转,轮盘上可以卷钢索或者其他东西。

通常提升高于30吨的卷扬机为大吨位卷扬机,生产大吨位的卷扬机技术在中国只有少数,目前最大吨位是65吨。主要细分为JK(快速),JM、JMW(慢速),JT(调速),JKL、2JKL手控快速等系列卷扬机,广泛应用于工矿、冶金、起重、建筑、化工、路桥、水电安装等起重行业。

常见卷扬机型号有

1、JK0.5-JK5单卷筒快速卷扬机

2、JK0.5-JK12.5单卷筒慢速卷扬机

3、JKL1.6-JKL5溜放型快速卷扬机

4、JML5、JML6、JML10溜放型打桩用卷扬机

5、2JK2-2JML10双卷筒卷扬机

6、JT800、JT700型防爆提升卷扬机

7、JK0.3-JK15 电控卷扬机

8、非标卷扬机

其中JK表示快速卷扬机,JM表示慢速卷扬机,JT表示防爆卷扬机,单卷筒表示一个卷筒容纳钢丝绳,双卷筒表示两个卷筒容纳钢丝绳。

特殊卷扬机型号有

液压卷扬机

变频卷扬机

双筒卷扬机

手刹杠杆式双制动卷扬机

带限位器卷扬机

双制动卷扬机

优点

相比传统的电动卷扬机(电动绞车),液压卷扬机(液压绞车)有很多优点:

1. 过载保护

2. 冲击防护

3. 防爆性能

气动卷扬机

简介

气动卷扬机是以空气压缩机提供的压缩气体为动力源的一种卷扬机,与传统的电动卷扬机相比,气动卷扬机具有防爆,防尘及防液体飞溅等特点,更能适应在恶劣的环境下工作,所以气动卷扬机广泛地使用于船舶,石油开采,采矿及电力等行业。

气动卷扬机由气动马达,减速机,制动器,离合器,卷筒,过负载保护装置及控制阀等构成,牵引力有200kg,500kg,1T,2T,3T及5T等,牵引长度可达到350米。

使用注意事项

为确保使用的安全,气动卷扬机所配钢丝绳的破断拉力值一般为负载承重的5倍左右,也就是说如何负载10KN的话,钢丝绳的破断拉力至少要达到50KN ,以确保运作的安全性。另外在使用时需要安装气动3元件(空气过滤器,空气加油器,气压调整器),空气加油器请一定安装在机体进气口前。

行星减速机有那些参数

行星减速机的参数有很多……

一、额定输入转速

行星减速机的驱动速度,如行星减速机与电机直接相连,则转速值与电机转速相同。本文中的额定输入转速是在环境温度为20度的条件下测得的,环境温度较高时请降低转速。

二、输出转速

输出转速是根据公式计算得来的,输出转速=输入转速/传动比。

三、传动效率

由于摩擦引起的损失总是使有效率小于1,也就是少于100%。样本上的效率是齿轮箱在满负荷运动情况下,行星减速机的传输效率。

四、额定输出扭矩

指行星减速机长时间(连续工作制)可以加载的力矩(无磨损),条件应满足负载均匀,安全系数等于1,理论寿命为20000小时。

五、加速扭矩

指工作周期每小时少于1000次时允许短时间加载到输出端的最大力矩。工作周期每小时大于1000次时,须考虑冲击因素。加速扭矩是周期工作制选型时的一个最大值,实际使用中的加速力矩必须小于加速扭矩。

六、紧急制动扭矩

指行星减速机输出端所能加载最大力矩,这人力矩可在行星减速机寿命期内加载1000次。绝对不能超过1000次。

七、最大扭矩

指行星减速机在静态条件或频繁启动条件下所能承受的输出扭矩,通常指峰值负载或启负载。

八、实际所需扭矩

所需扭矩取决于应用场合的实际工况,拟选行星减速机的额定扭矩必须大于这个扭矩。

九、计算用扭矩

会在选择行星减速机时被用到,可以由实际上所需扭矩和系数计算得出,公式为:计算用扭矩=实际所需扭矩*系数

十、轴向力

是指平行于轴心的一个力,它平行于输出轴,它的作用点与输出轴端有一定的轴向偏时,会形成一个额外的弯挠力矩。轴向力超过样本所示的额定值时,须用联轴节来抵消这个弯挠力。

十一、径向力

是指垂直作用于轴向力的个力,它的作用点与轴端有一定的轴向距离,这个点成一个核杠杆点,横向力形成一个弯挠力。

十二、侧倾力矩

指轴向力和径向力作用于输出端轴承上径向受力点的力矩。

十三、轴伸径向载荷、轴向载荷

选择行星减速机的附加依据是输出轴伸出端上的径向载荷和轴向载荷。轴的强度和轴承的承载力决定了许用径向载荷。产品样本中给出的最大允许值是指在最不利的方向作用在轴伸出端中点的力。不作用力不在中点时,越接近轴肩,允许的径向载荷就越大,相反,作用点离轴肩越远,允许的径向载荷就越小。

十四、安全系列

安全系列等于行星减速机的额定输入功率与电机功率的比值。

十五、使用系数

使用系数表现行星减速机的应用特性,它考虑到行星减速机的负载类型和每日工作时间是。

十六、安装力矩

行星减速机的组装及电机与行星减速机的连接安装(输入轴采用弹性联轴器要求),都是有力矩要求,建议合用力矩扳手来完成安装步骤。

喷油器总成有XY,ZH,HB是什么意思?

喷油器是一种加工精度非常高的精密器件,要求其动态流量范围大,抗堵塞和抗污染能力强以及雾化性能好。喷油器接受ECU送来的喷油脉冲信号,精确的控制燃油喷射量。

喷油器的喷雾特性包括雾化粒度、油雾分布、油束方向、射程和扩散锥角等。这些特性应符合柴油机燃烧系统的要求,以使混合气形成和燃烧完善,并获得较高的功率和热效率

喷油器简介

编辑

电控喷油器是共轨系统中最关键和最复杂的部件,也是设计、工艺难度最大的部件。ECU通过控制电磁阀的开启和关闭,将高压油轨中的燃油以最佳的喷油定时、喷油量和喷油率喷入的燃烧室。为了实现有效的喷油始点和精确的喷油量,共轨系统采用了带有液压伺服系统和电子控制元件(电磁阀)的专用喷油器。

喷油器由与传统喷油器相似的孔式喷油嘴、液压伺服系统(控制活塞、控制量孔等) 、电磁阀等组成。 [1]

喷油器

工作原理

编辑

柴油机喷油系统将燃油雾化,并分布在燃烧室内与空气混合的部件。

它主要由喷油嘴和喷油器体组成,它在缸盖上的安装位置与角度取决于燃烧室的设计。

喷油器分为开式和闭式两种。开式喷油器结构简单,但雾化不良,很少被采用。闭式喷油器广泛应用在各种柴油机上。柴油机在进气行程中吸入的是纯空气。在压缩行程接近终了时,

喷油器喷射脉宽

柴油经喷油泵将油压提高到100MPa以上,通过喷油器喷入气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。由于柴油机压缩比高(一般为16-22),所以压缩终了时气缸内空气压力可达3.5-4.5MPa,同时温度高达750-1000K(而汽油机在此时的混合气压力会为0.6-1.2MPa,温度达600-700K),大大超过柴油的自燃温度。因此柴油在喷入气缸后,在很短时间内与空气混合后便立即自行发火燃烧。气缸内的气压急速上升到6-9MPa,温度也升到2000-2500K。在高压气体推动下,活塞向下运动并带动曲轴旋转而作功,废气同样经排气管排入大气中。 [1]

普通柴油机的是由发动机凸轮轴驱动,借助于高压油泵将柴油输送到各缸燃油室。这种供油方式要随发动机转速的变化而变化,做不到各种转速下的最佳供油量。

共轨喷射式供油系统由高压油泵、公共供油管、喷油器、电控单元(ECU)和一些管道压力传感器组成,系统中的每一个喷油器通过各自的高压油管与公共供油管相连,公共供油管对喷油器起到液力蓄压作用。工作时,高压油泵以高压将燃油输送到公共供油管,高压油泵、压力传感器和ECU组成闭环工作,对公共供油管内的油压实现精确控制,彻底改变了供油压力随发动机转速变化的现象。其主要特点有以下三个方面:

喷油器工作原理示意图

1、喷油正时与燃油计量完全分开,喷油压力和喷油过程由ECU适时控制。

2、可依据发动机工作状况去调整各缸喷油压力,喷油始点、持续时间,从而追求喷油的最佳控制点。

3、能实现很高的喷油压力,并能实现柴油的预喷射。

相比起汽油机,柴油机具有燃油消耗率低(平均比汽油机低30%),而且柴油价格较低,所以燃油经济性较好;同时柴油机的转速一般比汽油机来得低,扭距要比汽油机大,但其质量大、工作时噪音大,制造和维护费用高,同时排放也比汽油机差。但随着现代技术的发展,柴油机的这些缺点正逐渐的被克服。

结构原理

编辑

喷油器的类型与结构

a、按喷油口结构可分:轴针式、孔式。

b、按线圈电阻值:高阻(13~16Ω)、低阻(2~3Ω)。

c、按用途分:MPI用、SPI用。

d、按燃料位置:上端供油式、侧面供油式

喷油器结构示意图

喷油过程

a、喷油器相当于电磁阀。

b、通电时电磁线圈产生电磁力,衔铁及针阀吸起,喷油器开启,汽油经喷孔喷入进气道或进气管。

c、断电时电磁力消失,衔铁及针阀在复位弹簧的作用下将喷孔封闭,喷油器停止喷油。

d、喷油器的通电、断电由电控单元以电脉冲控制。

e、喷油量由电脉冲宽度决定。脉冲宽度=喷油持续时间=喷油量。

f、一般针阀升程约为0.1mm,而喷油持续时间在2~l0ms范围内。

分类

编辑

(1)轴针式电磁喷油器

喷油时衔铁带动针阀从其座面上升约0.1mm,燃油从精密间隙中喷出。 为使燃油充分雾化,针阀前端磨出一段喷油轴针。喷油器吸动及下降时间约为1~1.5ms。

(2) 球阀式电磁喷油器

球阀的阀针质量轻,弹簧预紧力大,可获得更加宽广的动态流量范围。球阀具有自动定心作用,密封性好。同时,球阀简化了计量部分的结构,有助于提高喷油量精度。

(3)片阀式电磁喷油器

质量轻的阀片和孔式阀座与磁性优化的喷油器总成结合起来,使喷油器不仅具有较大的动态流量范围,而且抗堵塞能力较强。

(4)下部进油的喷油器

采用底部供油方式,由于燃油可围绕阀座区经喷油器内腔从上部不断的流出,对喷油器计量部位的冷却效果十分明显,故可有效的防止气阻产生,提高汽车热起动的可靠性。

此外,采用底部喷油的喷油器可省去燃油总管,并有利于降低成本。 [2]

保养

编辑

喷油器工作700h左右应检查调整一次。若开启压力低于规定值1Mpa以上或针阀头部积碳严重时,则应卸出针阀放入清洁柴油中用木片刮除积碳,用细钢丝疏通喷孔,装后进行调试,要求同一台机器的各缸喷油压力差必须小于1Mpa。

为使喷油器喷入缸内的柴油能够及时地完全燃烧,必须定期检查油泵的供油时间。供油时间过早,车辆会出现起动困难和敲缸的故障;供油时间过迟,会导致排气冒黑烟,机温过高,油耗上升。

喷油器针阀偶件的配合精度极高,并且喷孔孔径很小,因而必须严格按照季节变化选用规定牌号的清洁柴油,否则喷油器就不能正常工作。

清洗喷油器针阀偶件时不得与其它硬物相撞,也不可使其跌落在地,以免碰伤擦伤。更换喷油器针阀偶件时,应先将新偶件放入80℃的热柴油中浸泡10 s左右,让防锈油充分溶化后,再在干净柴油中将针阀在阀体内来回抽动,彻底洗净,这样才能避免喷油器工作时因防锈油溶化而发生粘住针阀的故障。 [2]

作用

1.提高油压(定压):将喷油压力提高到10MPa~20MPa。

2.控制喷油时间(定时):按规定的时间喷油和停止喷油。

3.控制喷油量(定量):根据柴油机的工作情况,改变喷油量的多少,以调节柴油机的转速和功率。 [2]

要求

1.按柴油机工作顺序供油,而且各缸供油量均匀。

2.各缸供油提前角要相同。

3.各缸供油延续时间要相等。

4.油压的建立和供油的停止都必须迅速,以防止滴漏现象的发生。 [2]

机械故障

编辑

常见的故障包括机械故障和电路故障。机械故障包括喷油器阀芯卡滞、喷油器阻塞及泄露,当喷油器出现上述故障后,会引起机械动作失效,从而影响发动机的正常运转,有时甚至会使发动机出现严重故障。

喷油器针阀卡滞

喷油器的工作是由发动机控制单元发出信号,喷油器的电磁线圈通电后产生吸力从而驱动喷油器针阀动作。由于针阀与阀座的间隙被残存的粘胶物阻塞,致使针阀动作发涩不能正常打开,从而影响正常的喷油量。喷油器发生针阀卡滞故障后,发动机会出现启动困难、怠速不稳、加速不良等症状。产生喷油器卡滞的主要原因是使用了劣质汽油,因为劣质汽油中的石蜡和胶质,从而导致喷油器针阀卡滞。

喷油器阻塞

喷油器阻塞故障可分为喷油器内部阻塞和喷油器头部外部阻塞。喷油器内部阻塞产生的原因多是汽油中混入杂质和污物阻塞喷油器内部针阀的运动间隙,使喷油器机械动作异常。当喷油器发生堵塞故障后,发动机会相应出现启动困难、怠速不稳、加速不良等症状,情况严重时甚至会造成发动机严重抖动,并引发相关机械原件异常磨损情况的发生。

喷油器泄露

喷油器泄露故障一般分为内部泄漏和外部泄露两种情况。喷油器内部泄露的原因多是其在使用中早期磨损,造成其在系统压力的作用下,不断向进气歧管内泄露燃油。喷油器外部泄露多发生在喷油器和油轨连接处,多是密封面密封不言。若汽油泄漏在进气歧管外部,油滴在气缸体上,遇热后会在发动机舱内蒸发,一旦出现电火花,随时都会引起火灾,后果很严重。当喷油器发生内部泄漏后,会造成喷油器喷射出的燃油雾化不好,引起发动机运转不平稳,混合气燃烧不完全,排气管冒黑烟的现象,并会导致车辆的燃油消耗量明显增加。当喷油器发生外部泄漏故障后,会导致发动机起动困难、怠速熄火、动力性下降、耗油量增加、运转喘振和加速不良等故障的发生。另外,当喷油器与进气管连接处的密封面破损后,还会导致进气系统泄漏,致使额外的空气进入发动机燃烧室,造成混合气偏稀,引发发动机运转异常。 [1]

故障排除方法

编辑

1 喷油很少或喷不出油:

(1) 燃油系统油路有空气 排除高压或低压油管中的空气

(2) 喷油嘴偶件咬死 修磨或更换

(3) 喷油泵供油不正常 按喷油泵故障排除方法找出原因处理

(4) 高压油管漏油 拧紧螺母、油管已有裂缝的应更换

(5) 喷油嘴偶件磨损 更换或修磨

2 喷油压力低:

(1) 调压螺钉松动 按规定重新调整至规定压力,并拧紧锁紧螺母

(2) 调压弹簧变形 调整或更换

(3) 针阀卡住 清洗或研磨

(4) 弹簧座、顶杆等零件磨损 修理或更换

3 喷油压力太高:

(1) 调压弹簧弹力高 按规定重新调整至规定压力,并拧紧锁紧螺母。

(2) 针阀粘住,清洗或研磨。

(3) 喷孔堵塞 清理喷孔或更换油嘴(喷嘴)。

4 喷油器漏油:

(1) 调压弹簧断裂 更换新弹簧

(2) 针阀体座面损坏 更换

(3) 针阀咬死 清理修磨或更换

(4) 紧帽变行 更换

(5) 喷油器体平面磨损 修磨或更换

5 喷油雾化不良:

(1) 喷油压力低,调整至规定压力。

(2) 喷油嘴座面损坏或烧坏,修磨或更换。

(3) 喷油嘴偶件配合面有垃圾,及时清洗。

6 喷油成线:

(1) 喷孔堵塞 用直径为0.2-0.3MM的钢丝疏通喷孔。

(2) 针阀体座面过度磨损 更换新的针阀体。

(3) 针阀咬死 清洗修磨或更换。

7 针阀表面烧坏或呈蓝黑色(柴油机过热) 检查冷却系统,并注意更换偶件。柴油机不要长时间超负荷运行。 [1]

检测方法

编辑

可以使用LED试灯将LED测试灯连接在喷油器插头两个插孔中,打开点火开关。

(1)起动发动机,如果LED灯仍不亮,表示三极管C极和E极断路。

(2)起动发动机时,LED灯会闪亮,说明传感器和电脑无是好的

(3)如果LED灯一直点亮,表示三极管C极和E极短问题。

修理方法

用过柴油发电机的农民朋友一般都知道,喷油嘴是柴油机燃料供给系统的三对精密偶件之一。它的正常使用寿命在一千小时以上。但由于使用不当,往往使用几百小时,甚至几十小时就磨损卡死了。

一、喷油嘴卡死的主要原因:

1、柴油不清洁,高压油管内有杂质,使针阀偶件关闭不严,燃烧室内高压燃气反窜,烧坏针阀偶件。此外,喷油器调压弹簧、挺杆等零件上的脏物通过喷油器挺杆移到了喷油器针阀上部,或油路上用于防止漏油的棉绳、铅丝经高压油管进入喷油器,都会使针阀偶件卡死。

2、机温过高喷油器冷却不良,造成的针阀偶件卡死。而供油时间过迟、冷却水道水垢过多或堵塞、水泵叶轮端面磨损、发动机长期超负荷等又会使发动机过热。

3、出油阀磨损,使喷油器停止喷油时出现滴油现象,以致使喷曲嘴燃焦积炭,发生卡死的故障。

4、喷油器安装时,漏装垫片或垫片破坏,造成漏气,引起喷油器局部温度过高而卡死。

5、喷油压力过低,造成燃烧室内高压燃气反窜;

6、零件制造方面的原因,如气缸盖上喷油器安装孔与喷油器配合过紧,针阀体与气缸盖上的安装孔间隙过小,气缸盖喷油器安装孔加工过深等。

二、喷油嘴卡死的修理方法:先将卡死的喷油嘴放入柴油或机油内加温,然后取出用布包住,再用手钳夹紧针阀并慢慢活动,将针阀从针阀体内取出。将少量清洁机油滴在针阀体内,使针阀在针阀体内反复活动,直至针阀能在针阀体内活动自如。如针阀的密封面有烧伤的痕迹,应当用研磨膏进行研磨。研磨时要注意掌握研磨膏用量和研磨时间。将清洗干净的针阀偶件装上喷油器,并调整好喷油压力后即可重新使用。 [2]

喷油器结构示意图

维护

编辑

一、要正确维护喷油泵的附件。

泵体侧边盖、油尺、加油塞(呼吸器)、溢油阀、油池螺堵、油平面螺钉、油泵固定螺栓等,要保证完好无损,这些附件对喷油泵的工作起着至关重要的作用。如侧边盖可防止灰尘、水份等杂质的侵入,呼吸器(带滤网) 能有效防止机油变质,溢油阀保证燃油系统具有一定压力而不进入空气等。因此必须对这些附件加强保养,发现损坏或丢失要及时维修或更换。

二、要经常检查喷油泵油池内的机油量及其质量是否符合要求。

每次启动柴油发电机前都应检查喷油泵内机油的量及其质量情况(靠发动机强制润滑的喷油泵除外),确保机油数量足够,质量良好,如果机油因混入水或柴油而变质,轻者造成柱塞及出油阀偶件的早期磨损,导致柴油机动力不足,启动困难,严重时造成柱塞及出油阀偶件的腐蚀锈蚀。由于油泵内漏、出油阀工作不良、输油泵挺杆与壳体磨损、密封圈损坏,都会使柴油漏入油池而稀释机油,因此应根据机油的质量情况及时更换,更换时要对油池进行彻底清洗,把油池底部的油泥等杂质清除干净,否则使用不长时间机油又会变质。机油的数量不可过多或过少,调速器内加油过多,易导致柴油机“飞车”,加油过少又将使润滑不良,应以机油尺或机油平面螺钉为准。另外当柴油机较长时间不使用时,一定要检查油泵油池中机油内是否有水、柴油等杂质,如有要立即更换,否则由于长时间存放,水分极易使柱塞、出油阀偶件锈蚀卡死而报废。

三、要定期检查调整喷油泵各缸的供油量。

由于柱塞偶件及出油阀偶件的磨损,造成柴油内漏,会使各缸的供油量减少或不匀,导致柴油机启动困难、功率不足、耗油增多、运转不稳。因此要定期检查调整喷油泵各缸的供油量,确保柴油机功率的发挥。在实际使用中,可通过观察柴油发电机的排烟、听发动机声音、摸排气歧管温度等方法来确定各缸供油量的大小。

四、要使用标准的高压油管。

喷油泵在供油过程中,由于柴油的可压缩性、高压油管的弹性,高压柴油会在管内形成压力波动,压力波在管内传递需要一定时间,为保证各缸供油间隔角一致、供油量均匀、柴油机工作平稳,高压油管的长度及管径是经过测算而选定的。因此当某缸高压油管损坏时,应用标准长度和管径的油管更换。而在实际使用中,由于缺少标准油管,用其它油管代用,不考虑油管的长度、管径是否相同,使油管长度及管径相差很大,虽然可以应急使用,但将导致该缸的供油提前角度及供油量发生变化,致使整机工作不平稳,因此在使用中一定要使用标准的高压油管。

五、要定期就机检查出阀偶件的密封情况。

喷油泵工作一段时间,通过检查出油阀的密封情况可以对柱塞的磨损及油泵工作情况做粗略的判断,从而有利于确定修理及保养方法。检查时,拧开各缸高压油管接头,用输油泵之手油泵泵油,如此时发现喷油泵顶部油管接头有油流出,则说明该出油阀密封不良(当然如出油阀弹簧折断也会出现这种情况),如多缸出现密封不良现象,则应对喷油泵进行彻底调试保养,更换偶件。

六、要及时更换已磨损的柱塞及出油阀偶件。

当发现柴油机启动困难、功率下降、油耗增加时,通过调整喷油泵及喷油器仍不见好转时,应拆检喷油泵柱塞及出油阀偶件,如柱塞及出油阀磨损到一定程度,应及时更换,不要坚持再用。因偶件磨损后所带来的柴油机启动困难、油耗增加、动力不足等损失远远超过更换偶件所需费用,更换后柴油机的动力性及经济性会有明显改观,因此要及时对磨损的偶件进行更换。

七、要把好柴油使用及过滤关,保证进入喷油泵内的柴油高度清洁。

一般来说,柴油发电机对柴油的滤清要求远比汽油机对汽油的要求高得多,在使用时要选用符合要求牌号的柴油,而且至少经过48h沉淀。加强对柴油滤清器的清洁保养,及时清洗或更换滤芯;根据作业环境条件及时对柴油箱进行清洗,彻底去除油箱底部的油泥及水分,柴油中的任何杂质都会对喷油泵柱塞、出油阀偶件及传动部件造成严重的腐蚀或磨损。

八、要定期检查调整喷油泵供油提前角及各缸供油间隔角。

在使用时,由于联轴节联接螺栓的松动,凸轮轴及滚轮体部件的磨损,常导致供油提前角及各缸供油间隔角发生变化,使柴油燃烧变坏,柴油机的动力性、经济性变差,同时启动困难,运转不稳,发出异响及过热等。在实际使用中,多数驾驶员重视整体供油提前角的检查调整,却忽视了供油间隔角(涉及单泵供油提前角调整)的检查调整,导致整体调整后虽然第一缸供油正时,但其余各缸由于凸轮轴、滚轮传动部件的磨损等原因使供油并不一定正时,同样会导致柴油机启动困难、动力不足、运转不平稳,尤其对于使用时间较长的喷油泵来说,更要重视对供油间隔角的检查调整。

九、要定期检查凸轮轴间隙。

对喷油泵凸轮轴的轴向间隙要求很严,一般在0.03~0.15mm之间,该间隙过大,会加剧滚轮传动部件对凸轮工作表面的冲击,从而加大凸轮表面的早期磨损,改变供油提前角度;凸轮轴轴承轴、径间隙过大,易造成凸轮轴运转不平稳,油量调节拉杆抖动,供油量发生周期性变化,使柴油机运转不平稳,因此要定期检查调整。凸轮轴轴向间隙过大时,可在两侧加入垫片调整,径向间隙过大,一般要更换新品。

十、要定期检查相关键槽及固定螺栓的磨损情况。 [2]

喷油偏多原因

编辑

柴油发电机组的喷油泵供油过多常见的原因为以下三个:

1、喷油泵柱塞调整得供油量过大,或是调节齿圈锁紧螺钉松脱而使调节齿圈位移,导致喷油泵供油量过大.

2、调速器内限制齿条最大油量的调整螺钉调整过大或油门手柄限制螺钉调整过大.

3、调速器中的机油过多,使供油量也会增多,并导致“飞车”。 [2]

东风11型内燃机车的技术特性

东风11型机车采用交—直流电传动,装用一台额定功率3600千伏安的JF204C型三相交流同步发电机,和六台额定功率530千瓦的ZD106型直流牵引电动机。柴油机通过弹性联轴节直接驱动一台三相交流同步牵引发电机,通过硅整流装置把牵引发电机发出的三相交流电整流为直流电,再将电能输送给两台转向架上的六台并联的直流串励牵引电动机,通过传动齿轮驱动车轮。机车标称功率3040千瓦,最高恒功速度为160公里/小时,最高运行速度为170公里/小时。东风11型机车单机牵引定额640吨的旅客列车(约12节车厢)时,在平直道上的最大平衡速度可达167公里/小时;牵引定额1100吨的大编组旅客列车(约20节)时,在平直道上的最大平衡速度可达143公里/小时。

机车采用基于英特尔80C186微处理器的微机控制系统,具有恒功励磁控制、防空转防滑行控制、故障诊断显示功能,能使机车在任何工况时处于最佳状态下恒功率运行,并具有全功率自负荷试验功能的电阻制动系统,以及电空制动系统、TVM-300机车信号系统、移频机车信号及轴承温度检侧等新技术。 在生产过程中,戚墅堰机车车辆厂也对东风11型机车进行了改进。早期的东风11型机车微机控制系统采用黑白显示屏,显示清晰度低,从1998年开始生产的机车改为采用大屏幕彩色液晶显示屏。东风11型机车原设计空气制动风源系统采用了二台供风量为1.6立方米/分钟的W-1.6/9型空气压缩机,但投入运营后发现提速客车的空气弹簧、塞拉门、集便器等车用设备大量使用压缩空气,使得空气压缩机长期处于工作状态,因而研制了供风量为2.4立方米/分钟的V-2.4/9型空气压缩机,从1999年开始使用。同时空气管路改用双管供风系统,一路供列车制动用风,另一路供客车设备用风,以确保列车制动用风的需要。由0367号机车起,改用标准化司机室。

由于中国铁路在2000年10月21日开展第三次大提速,兰新铁路特快旅客列车速度提升至最高140公里/小时。兰新铁路具有风沙大、高海拔、温差大、坡道大四大特点,戚墅堰机车车辆厂对配属乌鲁木齐铁路局、兰州铁路局的东风11型高原型机车作出了相应改进。机车安装完善的双侧进风空气滤清/滤沙装置,柴油机空气滤清器系统由2级滤清改为4级滤清,进风口增设了一道防沙网。但由于这些措施增加了进气阻力,故每个增压器改从机车两侧同时进气以加大进气面积,增加空气流量满足柴油机对进气量的要求。另外又修改了微机控制软件的柴油机海拔功率校正参数,以保护柴油机和涡轮增压器。由于兰新线长大坡道多,故加大了齿轮传动比,由76:29改至65:22,并加大了增压器的功率,机车最大起动牵引力从原来的245千牛提高到277千牛,提高了13.1%;持续牵引力从原来的160千牛提高到181.5千牛,提高了13.5%,但最高运行速度降至153公里/小时。

九十千瓦三相发电机,当电流是54A,电压是40O伏,转速是|520转,需多少匹马力的柴?

给90KW发电机配柴油机,只要在90KW基础上增加几个千瓦即可。这几个千瓦包括冷却风扇的功率以及联轴节的传动损失功率等附加功率即可。由于柴油机产品的功率是系列分级的,所以可以按照产品手册中所列出的功率找一款大于90KW并最接近90KW的产品,如95KW。

如果不按发电机额定电压配置原动机,而是按实际应用(400V,54A)配置,那么选配原则还是一样的,只要计算出实际功率(假设功率因数是0.8):

√3x400Vx54Ax0.8≈35KW

因为 1千瓦(kW)=1.3410221英制马力(hp)

所以 35KWx 1.3410221 ≈47马力

即可以配置35KW以上(如40KW)或47马力以上(如50马力、55马力)的柴油机。

关于KTR-GEAREX85联轴节高功率和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

KTR联轴器官网产品是德国的联轴器产品,欢迎大家选购